Optimized neural network search of Higgs boson production with the Tevatron

被引:13
作者
Boos, E [1 ]
Dudko, L [1 ]
Smirnov, D [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Sckobeltsyn Inst Nucl Phys, Moscow 119992, Russia
关键词
D O I
10.1016/S0168-9002(03)00477-7
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Making the best choice of kinematic variables is one of the main steps in using Neural Networks (NN) in high-energy physics. Our optimizations are based on the analysis of the Feynman diagram structure (singularities and spin effects) for the signal and background processes. Applying this method leads to improved efficiency of the Higgs search compared with the earlier NN strategy and the conventional analysis. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:486 / 488
页数:3
相关论文
共 6 条
[1]  
[Anonymous], HEPPH9503280
[2]   Strategy for discovering a low-mass Higgs boson at the Fermilab Tevatron [J].
Bhat, PC ;
Gilmartin, R ;
Prosper, HB .
PHYSICAL REVIEW D, 2000, 62 (07) :1-10
[3]  
Boos E, 1999, EUR PHYS J C, V11, P473
[4]  
BOOS E, 9436358 INP MSU
[5]  
BOOS EE, SNUTP94116
[6]  
DUDKO L, 1999, P AIHENP 99 APR