Atmospheric radiative transfer modeling: a summary of the AER codes

被引:1448
作者
Clough, SA [1 ]
Shephard, MW [1 ]
Mlawer, E [1 ]
Delamere, JS [1 ]
Iacono, M [1 ]
Cady-Pereira, K [1 ]
Boukabara, S [1 ]
Brown, PD [1 ]
机构
[1] AER Inc, Lexington, MA 02421 USA
基金
美国国家航空航天局;
关键词
AER radiative transfer models; line-by-line radiative transfer model (LBLRTM); LNFL; RRTM; monochromatic radiative transfer model (MonoRTM); continuum (MT_CKD); Kurucz solar source function;
D O I
10.1016/j.jqsrt.2004.05.058
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http:// www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM_LW and RRTM_SW; the Monochromatic Radiative Transfer Model (MonoRTM); the NIT_CKD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 48 条
  • [1] Tropospheric emission spectrometer for the Earth Observing System's Aura Satellite
    Beer, R
    Glavich, TA
    Rider, DM
    [J]. APPLIED OPTICS, 2001, 40 (15) : 2356 - 2367
  • [2] Clough S. A., 1989, Atmos. Res, V23, P229, DOI [DOI 10.1016/0169-8095(89)90020-3, 10.1016/0169-8095(89)90020-3]
  • [3] LINE-BY-LINE CALCULATIONS OF ATMOSPHERIC FLUXES AND COOLING RATES - APPLICATION TO WATER-VAPOR
    CLOUGH, SA
    IACONO, MJ
    MONCET, JL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) : 15761 - 15785
  • [4] DIPOLE-MOMENT OF WATER FROM STARK MEASUREMENTS OF H2O, HDO, AND D2O
    CLOUGH, SA
    BEERS, Y
    KLEIN, GP
    ROTHMAN, LS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (05) : 2254 - 2259
  • [5] CLOUGH SA, 1981, P SOC PHOTO-OPT INST, V277, P152
  • [6] CLOUGH SA, 2004, UNPUB RETRIEVAL PWV
  • [7] Evans KF, 1998, J ATMOS SCI, V55, P429, DOI 10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO
  • [8] 2
  • [9] Total internal partition sums for molecular species in the 2000 edition of the HITRAN database
    Fischer, J
    Gamache, RR
    Goldman, A
    Rothman, LS
    Perrin, A
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 82 (1-4) : 401 - 412
  • [10] Fu Q, 1998, J CLIMATE, V11, P2223, DOI 10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO