Contribution of the 30/36 hydrophobic contact at the C-terminus of the α-helix to the stability of the ubiquitin molecule

被引:22
作者
Thomas, ST [1 ]
Makhatadze, GI [1 ]
机构
[1] Penn State Univ, Coll Med, Dept Biochem & Mol Biol, Hershey, PA 17033 USA
关键词
D O I
10.1021/bi0000418
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The contribution of the hydrophobic contact in the C-capping motif of the alpha-helix to the thermodynamic stability of the ubiquitin molecule has been analyzed. For this, 16 variants of ubiquitin containing the full combinatorial set of four nonpolar residues Val, Ile, Leu, and Phe at C4 (Ile30) and C " (Ile36) positions were generated. The secondary structure content as estimated using far-UV circular dichroism (CD) spectroscopy of all but Phe variants at position 30 did not show notable changes upon substitutions. The thermodynamic stability of these ubiquitin variants was measured using differential scanning calorimetry, and it was shown that all variants have lower stability as measured by decreases in the Gibbs energy. Since in some cases the decrease in stability was so dramatic that it rendered an unfolded protein, it was therefore concluded that, despite apparent preservation of the secondary structure, the 30/36 hydrophobic contact is essential for the stability of the ubiquitin molecule. The decrease in the Gibbs energy in many cases was found to be accompanied by a large (up to 25%) decrease in the enthalpy of unfolding, particularly significant in the Variants containing Ile to Leu substitutions. This decrease in enthalpy of unfolding is proposed to be primarily the result of the perturbed packing interactions in the native state of the lie --> Leu variants. The analysis of these data and comparison with effects of similar amino acid substitutions on the stability of other model systems suggest that ne --> Leu substitutions cannot be isoenergetic at the buried site.
引用
收藏
页码:10275 / 10283
页数:9
相关论文
共 71 条
[1]   Helix capping [J].
Aurora, R ;
Rose, GD .
PROTEIN SCIENCE, 1998, 7 (01) :21-38
[2]   Is protein folding hierarchic? II. Folding intermediates and transition states [J].
Baldwin, RL ;
Rose, GD .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (02) :77-83
[3]   Is protein folding hierarchic? I. Local structure and peptide folding [J].
Baldwin, RL ;
Rose, GD .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (01) :26-33
[4]   Unfolded BPTI variants with a single disulfide bond have diminished non-native structure distant from the crosslink [J].
Barbar, E ;
Barany, G ;
Woodward, C .
FOLDING & DESIGN, 1996, 1 (01) :65-76
[5]   SIDE CHAIN-BACKBONE HYDROGEN-BONDING CONTRIBUTES TO HELIX STABILITY IN PEPTIDES DERIVED FROM AN ALPHA-HELICAL REGION OF CARBOXYPEPTIDASE-A [J].
BRUCH, MD ;
DHINGRA, MM ;
GIERASCH, LM .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 10 (02) :130-139
[6]   ENERGETICS OF DENATURATION AND M-VALUES OF STAPHYLOCOCCAL NUCLEASE MUTANTS [J].
CARRA, JH ;
PRIVALOV, PL .
BIOCHEMISTRY, 1995, 34 (06) :2034-2041
[7]   3-STATE THERMODYNAMIC ANALYSIS OF THE DENATURATION OF STAPHYLOCOCCAL NUCLEASE MUTANTS [J].
CARRA, JH ;
ANDERSON, EA ;
PRIVALOV, PL .
BIOCHEMISTRY, 1994, 33 (35) :10842-10850
[8]   HELIX CAPPING PROPENSITIES IN PEPTIDES PARALLEL THOSE IN PROTEINS [J].
CHAKRABARTTY, A ;
DOIG, AJ ;
BALDWIN, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11332-11336
[9]  
CORMICK B, 1992, SHORT PROTOCOLS MOL, P818
[10]   SIDE-CHAIN ENTROPY OPPOSES ALPHA-HELIX FORMATION BUT RATIONALIZES EXPERIMENTALLY DETERMINED HELIX-FORMING PROPENSITIES [J].
CREAMER, TP ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5937-5941