Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal

被引:315
作者
Okada, E
Delpy, DT
机构
[1] Keio Univ, Dept Elect & Elect Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[2] UCL, Dept Med Phys & Bioengn, London WC1E 6JA, England
关键词
D O I
10.1364/AO.42.002915
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is important for near-infrared spectroscopy (NIRS) and imaging to estimate the sensitivity of the detected signal to the change in hemoglobin that results from brain activation and the volume of tissue interrogated for a specific source-detector fiber spacing. In this study light propagation in adult head models is predicted by Monte Carlo simulation to investigate the effect of the superficial tissue thickness on the partial optical path length in the brain and on the spatial sensitivity profile. In the case of source-detector spacing of 30 mm, the partial optical path length depends mainly on the depth of the inner skull surface whereas the spatial sensitivity profile is significantly affected by the thickness of the cerebrospinal fluid layer. The mean optical path length that can be measured by time-resolved experiments increases when the skull thickness increases whereas the partial mean optical path length in the brain decreases when the skull thickness increases. These results indicate that it is not appropriate to use the mean optical path length as an alternative to the partial optical path length to compensate the NIRS signal for the difference in sensitivity caused by variation of the superficial tissue thickness. (C) 2003 Optical Society of America.
引用
收藏
页码:2915 / 2922
页数:8
相关论文
共 22 条
[1]   Optical imaging in medicine .2. Modelling and reconstruction [J].
Arridge, SR ;
Hebden, JC .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :841-853
[2]   The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics [J].
Boas, DA ;
Gaudette, T ;
Strangman, G ;
Cheng, XF ;
Marota, JJA ;
Mandeville, JB .
NEUROIMAGE, 2001, 13 (01) :76-90
[3]   A novel method for fast imaging of brain function, non-invasively, with light [J].
Chance, B ;
Anday, E ;
Nioka, S ;
Zhou, S ;
Hong, L ;
Worden, K ;
Li, C ;
Murray, T ;
Ovetsky, Y ;
Pidikiti, D ;
Thomas, R .
OPTICS EXPRESS, 1998, 2 (10) :411-423
[4]   Optical tomography in the presence of void regions [J].
Dehghani, H ;
Arridge, SR ;
Schweiger, M ;
Delpy, DT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (09) :1659-1670
[5]   ESTIMATION OF OPTICAL PATHLENGTH THROUGH TISSUE FROM DIRECT TIME OF FLIGHT MEASUREMENT [J].
DELPY, DT ;
COPE, M ;
VANDERZEE, P ;
ARRIDGE, S ;
WRAY, S ;
WYATT, J .
PHYSICS IN MEDICINE AND BIOLOGY, 1988, 33 (12) :1433-1442
[6]   An investigation of light transport through scattering bodies with non-scattering regions [J].
Firbank, M ;
Arridge, SR ;
Schweiger, M ;
Delpy, DT .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (04) :767-783
[7]   A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses [J].
Firbank, M ;
Okada, E ;
Delpy, DT .
NEUROIMAGE, 1998, 8 (01) :69-78
[8]   MEASUREMENT OF THE OPTICAL-PROPERTIES OF THE SKULL IN THE WAVELENGTH RANGE 650-950 NM [J].
FIRBANK, M ;
HIRAOKA, M ;
ESSENPREIS, M ;
DELPY, DT .
PHYSICS IN MEDICINE AND BIOLOGY, 1993, 38 (04) :503-510
[9]   A MONTE-CARLO INVESTIGATION OF OPTICAL PATHLENGTH IN INHOMOGENEOUS TISSUE AND ITS APPLICATION TO NEAR-INFRARED SPECTROSCOPY [J].
HIRAOKA, M ;
FIRBANK, M ;
ESSENPREIS, M ;
COPE, M ;
ARRIDGE, SR ;
VANDERZEE, P ;
DELPY, DT .
PHYSICS IN MEDICINE AND BIOLOGY, 1993, 38 (12) :1859-1876
[10]   Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study [J].
Kohri, S ;
Hoshi, Y ;
Tamura, M ;
Kato, C ;
Kuge, Y ;
Tamaki, N .
PHYSIOLOGICAL MEASUREMENT, 2002, 23 (02) :301-312