Molecular mechanism of AHSP-mediated stabilization of α-hemoglobin

被引:136
作者
Feng, L
Gell, DA
Zhou, SP
Gu, LC
Kong, Y
Li, JQ
Hu, M
Yan, N
Lee, C
Rich, AM
Armstrong, RS
Lay, PA
Gow, AJ
Weiss, MJ [1 ]
Mackay, JP
Shi, YG
机构
[1] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Univ Sydney, Sch Mol & Microbial Biosci, Sydney, NSW 2006, Australia
[4] Princeton Univ, Lewis Thomas Lab, Dept Mol Biol, Princeton, NJ 08544 USA
[5] Univ Sydney, Sch Chem, Ctr Heavy Met Res, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Chem, Ctr Struct Biol & Struct Chem, Sydney, NSW 2006, Australia
关键词
D O I
10.1016/j.cell.2004.11.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two a and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds aft and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha(1)-beta(1) interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound aft is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 38 条
  • [1] Rice hemoglobins - Gene cloning, analysis, and O-2-binding kinetics of a recombinant protein synthesized in Escherichia coli
    ArredondoPeter, R
    Hargrove, MS
    Sarath, G
    Moran, JF
    Lohrman, J
    Olson, JS
    Klucas, RV
    [J]. PLANT PHYSIOLOGY, 1997, 115 (03) : 1259 - 1266
  • [2] ALPHA-CHAIN AND GLOBIN - INTERMEDIATES IN SYNTHESIS OF RABBIT HEMOGLOBIN
    BAGLIONI, C
    CAMPANA, T
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1967, 2 (04): : 480 - &
  • [3] BAGLIONI C, 1966, BIBL HAEMATOL, V29, P1056
  • [4] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [5] Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
  • [6] BUNN HF, 1987, BLOOD, V69, P1
  • [7] Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding
    Chai, JJ
    Wu, Q
    Shiozaki, E
    Srinivasula, SM
    Alnemri, ES
    Shi, YG
    [J]. CELL, 2001, 107 (03) : 399 - 407
  • [8] Protein backbone angle restraints from searching a database for chemical shift and sequence homology
    Cornilescu, G
    Delaglio, F
    Bax, A
    [J]. JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) : 289 - 302
  • [9] Crystal structure of cytoglobin: The fourth globin type discovered in man displays heme hexa-coordi nation
    de Sanctis, D
    Dewilde, S
    Pesce, A
    Moens, L
    Ascenzi, P
    Hankeln, T
    Burmester, T
    Bolognesi, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 336 (04) : 917 - 927
  • [10] Deane H., 1902, RECORDS GEOLOGICAL S, V1, P15