Identity-based encryption from the Weil pairing

被引:4333
作者
Boneh, D [1 ]
Franklin, M
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
关键词
identity-based encryption; bilinear maps; Weil pairing; Tate pairing; elliptic curve cryptography; escrow ElGamal;
D O I
10.1137/S0097539701398521
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a fully functional identity-based encryption (IBE) scheme. The scheme has chosen ciphertext security in the random oracle model assuming a variant of the computational Diffie-Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic curves is an example of such a map. We give precise definitions for secure IBE schemes and give several applications for such systems.
引用
收藏
页码:586 / 615
页数:30
相关论文
共 46 条
[21]  
Gennaro R, 1999, LECT NOTES COMPUT SC, V1592, P295
[22]   Robust and efficient sharing of RSA functions [J].
Gennaro, R ;
Rabin, T ;
Jarecki, S ;
Krawczyk, H .
JOURNAL OF CRYPTOLOGY, 2000, 13 (02) :273-300
[23]  
Goldreich O, 1998, LECT NOTES COMPUT SC, V1462, P153, DOI 10.1007/BFb0055726
[24]   PROBABILISTIC ENCRYPTION [J].
GOLDWASSER, S ;
MICALI, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1984, 28 (02) :270-299
[25]  
HUHNLEIN D, 2000, LNCS, V2012, P275
[26]  
Joux A, 2002, LECT NOTES COMPUT SC, V2369, P20
[27]  
Joux A, 2000, LECT NOTES COMPUT SC, V1838, P385
[28]  
JOUX A, 2001, SEPARATING DECISION
[29]  
Lang S., 1973, ELLIPTIC FUNCTIONS
[30]  
MAURER UM, 1991, LECT NOTES COMPUT SC, V547, P498