Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair:: the 3′ ends justify the means

被引:222
作者
Mol, CD
Hosfield, DJ
Tainer, JA
机构
[1] Scripps Res Inst, Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
来源
MUTATION RESEARCH-DNA REPAIR | 2000年 / 460卷 / 3-4期
关键词
DNA damage; DNA base excision repair; abasic sites; AP endonucleases;
D O I
10.1016/S0921-8777(00)00028-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo TV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:211 / 229
页数:19
相关论文
共 114 条
[1]   THE ARABIDOPSIS-THALIANA APURINIC ENDONUCLEASE ARP REDUCES HUMAN TRANSCRIPTION FACTORS FOS AND JUN [J].
BABIYCHUK, E ;
KUSHNIR, S ;
VANMONTAGU, M ;
INZE, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :3299-3303
[2]   ESCHERICHIA-COLI ENDONUCLEASE-III IS NOT AN ENDONUCLEASE BUT A BETA-ELIMINATION CATALYST [J].
BAILLY, V ;
VERLY, WG .
BIOCHEMICAL JOURNAL, 1987, 242 (02) :565-572
[3]   STRUCTURE OF CHICKEN MUSCLE TRIOSE PHOSPHATE ISOMERASE DETERMINED CRYSTALLOGRAPHICALLY AT 2.5A RESOLUTION USING AMINO-ACID SEQUENCE DATA [J].
BANNER, DW ;
BLOOMER, AC ;
PETSKO, GA ;
PHILLIPS, DC ;
POGSON, CI ;
WILSON, IA ;
CORRAN, PH ;
FURTH, AJ ;
MILMAN, JD ;
OFFORD, RE ;
PRIDDLE, JD ;
WALEY, SG .
NATURE, 1975, 255 (5510) :609-614
[4]   Crystal structure of a G:T/U mismatch-specific DNA glycosylase:: Mismatch recognition by complementary-strand interactions [J].
Barrett, TE ;
Savva, R ;
Panayotou, G ;
Barlow, T ;
Brown, T ;
Jiricny, J ;
Pearl, LH .
CELL, 1998, 92 (01) :117-129
[5]   IDENTIFICATION OF CRITICAL ACTIVE-SITE RESIDUES IN THE MULTIFUNCTIONAL HUMAN DNA-REPAIR ENZYME HAP1 [J].
BARZILAY, G ;
MOL, CD ;
ROBSON, CN ;
WALKER, LJ ;
CUNNINGHAM, RP ;
TAINER, JA ;
HICKSON, ID .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (07) :561-568
[6]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[7]   AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III [J].
CALDECOTT, KW ;
MCKEOWN, CK ;
TUCKER, JD ;
LJUNGQUIST, S ;
THOMPSON, LH .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :68-76
[8]   Human apurinic/apyrimidinic endonuclease is processive [J].
Carey, DC ;
Strauss, PR .
BIOCHEMISTRY, 1999, 38 (50) :16553-16560
[9]   ENDONUCLEASE-IV OF ESCHERICHIA-COLI IS INDUCED BY PARAQUAT [J].
CHAN, E ;
WEISS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (10) :3189-3193
[10]   2 DISTINCT HUMAN DNA DIESTERASES THAT HYDROLYZE 3'-BLOCKING DEOXYRIBOSE FRAGMENTS FROM OXIDIZED DNA [J].
CHEN, DS ;
HERMAN, T ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5907-5914