Genetic recombination and the cell cycle: what we have learned from chromosome dimers

被引:87
作者
Lesterlin, C [1 ]
Barre, FX [1 ]
Cornet, F [1 ]
机构
[1] Lab Microbiol & Genet Mol, F-31062 Toulouse, France
关键词
D O I
10.1111/j.1365-2958.2004.04356.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site-specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site-specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.
引用
收藏
页码:1151 / 1160
页数:10
相关论文
共 66 条
[1]   Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination [J].
Alen, C ;
Sherratt, DJ ;
Colloms, SD .
EMBO JOURNAL, 1997, 16 (17) :5188-5197
[2]   EFFECTS OF HOLLIDAY JUNCTION POSITION ON XER-MEDIATED RECOMBINATION IN-VITRO [J].
ARCISZEWSKA, L ;
GRAINGE, I ;
SHERRATT, D .
EMBO JOURNAL, 1995, 14 (11) :2651-2660
[3]   XER SITE-SPECIFIC RECOMBINATION IN-VITRO [J].
ARCISZEWSKA, LK ;
SHERRATT, DJ .
EMBO JOURNAL, 1995, 14 (09) :2112-2120
[4]   FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases [J].
Aussel, L ;
Barre, FX ;
Aroyo, M ;
Stasiak, A ;
Stasiak, AZ ;
Sherratt, D .
CELL, 2002, 108 (02) :195-205
[5]  
Azaro M.A., 2002, MOBILE DNA-UK, P118, DOI DOI 10.1128/9781555817954.CH7
[6]   FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation [J].
Barre, FX ;
Aroyo, M ;
Colloms, SD ;
Helfrich, A ;
Cornet, F ;
Sherratt, DJ .
GENES & DEVELOPMENT, 2000, 14 (23) :2976-2988
[7]   A NEW ESCHERICHIA-COLI CELL-DIVISION GENE, FTSK [J].
BEGG, KJ ;
DEWAR, SJ ;
DONACHIE, WD .
JOURNAL OF BACTERIOLOGY, 1995, 177 (21) :6211-6222
[8]   FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein [J].
Bigot, S ;
Corre, J ;
Louarn, JM ;
Cornet, F ;
Barre, FX .
MOLECULAR MICROBIOLOGY, 2004, 54 (04) :876-886
[9]  
BLAKELY G, 1991, NEW BIOL, V3, P789
[10]   2 RELATED RECOMBINASES ARE REQUIRED FOR SITE-SPECIFIC RECOMBINATION AT DIF AND CER IN ESCHERICHIA-COLI K12 [J].
BLAKELY, G ;
MAY, G ;
MCCULLOCH, R ;
ARCISZEWSKA, LK ;
BURKE, M ;
LOVETT, ST ;
SHERRATT, DJ .
CELL, 1993, 75 (02) :351-361