Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal

被引:184
作者
Marquina, A
Osher, S
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Valencia, Dept Matemat Aplicada, E-46100 Burjassot, Spain
关键词
image restoration; total variation norm; upwind schemes; nonlinear diffusion; level set motion;
D O I
10.1137/S1064827599351751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we formulate a time dependent model to approximate the solution to the nonlinear total variation optimization problem for deblurring and noise removal introduced by Rudin and Osher [ Total variation base image restoration with free local constraints, in Proceedings IEEE Internat. Conf. Imag. Proc., IEEE Press, Piscataway, NJ, ( 1994), pp. 31-35] and Rudin, Osher, and Fatemi [ Phys. D, 60 ( 1992), pp. 259-268], respectively. Our model is based on level set motion whose steady state is quickly reached by means of an explicit procedure based on Roe's scheme [ J. Comput. Phys., 43 ( 1981), pp. 357-372], used in fluid dynamics. We show numerical evidence of the speed of resolution and stability of this simple explicit procedure in some representative 1D and 2D numerical examples.
引用
收藏
页码:387 / 405
页数:19
相关论文
共 26 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]  
[Anonymous], 1996, LEVEL SET METHODS
[3]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[4]  
BLOMGREN P, 1997, 9752 UCLA CAM
[5]  
BLOMGREN P, 1997, P SPIE 97 SAN DIEG S
[6]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[7]   Preserving symmetry in preconditioned Krylov subspace methods [J].
Chan, TF ;
Chow, E ;
Saad, Y ;
Yeung, MC .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02) :568-581
[8]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[9]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[10]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]