Polarization-transparent microphotonic devices in the strong confinement limit

被引:480
作者
Barwicz, Tymon
Watts, Michael R.
Popovic, Milos A.
Rakich, Peter T.
Socci, Luciano
Kartner, Franz X.
Ippen, Erich P.
Smith, Henry I.
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Pirelli Labs SpA, Milan, Italy
关键词
D O I
10.1038/nphoton.2006.41
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microphotonic structures that strongly confine light, such as photonic crystals and micron-sized resonators, have unique characteristics that could radically advance technology(1-6). However, such devices cannot be used in most applications because of their inherent polarization sensitivity; they respond differently to light polarized along different axes(7-9). To take advantage of the distinctive properties of these structures, a general, integrated, broadband solution to their polarization sensitivity is needed. Here, we show the first demonstration of such a solution. It enables arbitrary, polarization-sensitive, strong-confinement (SC) microphotonic devices to be rendered insensitive (transparent) to the input polarization at all wavelengths of operation. To test our approach, we create the first polarization-transparent add-drop filter from polarization-sensitive microring resonators. It shows almost complete elimination of polarization sensitivity over the 60-nm bandwidth measured, while maintaining outstanding filter performance. This development is a milestone for SC microphotonics, allowing the applications of photonic-crystal and microring devices to several areas, including communications, spectroscopy and remote sensing.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 19 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[3]   Fabrication of add-drop filters based on frequency-matched microring resonators [J].
Barwicz, Tymon ;
Popovic, Milos A. ;
Watts, Michael R. ;
Rakich, Peter T. ;
Ippen, Erich P. ;
Smith, Henry I. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (05) :2207-2218
[4]   Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator [J].
Headley, WR ;
Reed, GT ;
Howe, S ;
Liu, A ;
Paniccia, M .
APPLIED PHYSICS LETTERS, 2004, 85 (23) :5523-5525
[5]   A fast low-power optical memory based on coupled micro-ring lasers [J].
Hill, MT ;
Dorren, HJS ;
de Vries, T ;
Leijtens, XJM ;
den Besten, JH ;
Smalbrugge, B ;
Oei, YS ;
Binsma, H ;
Khoe, GD ;
Smit, MK .
NATURE, 2004, 432 (7014) :206-209
[6]  
Kwan CH, 2002, J LIGHTWAVE TECHNOL, V20, P1018, DOI 10.1109/JLT.2002.1018813
[7]   High-density integrated optics [J].
Manolatou, C ;
Johnson, SG ;
Fan, SH ;
Villeneuve, PR ;
Haus, HA ;
Joannopoulos, JD .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (09) :1682-1692
[8]   Synthesis of direct-coupled-resonators bandpass filters for WDM systems [J].
Melloni, A ;
Martinelli, M .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (02) :296-303
[9]  
Pavesi L., 2004, SILICON PHOTONICS, DOI DOI 10.1016/j.apsusc.2014.10.011
[10]  
POPOVIC MA, 2005, OPT FIB COMM C OFC I