Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis

被引:213
作者
Wang, WJ
Baldocka, JA
Dalala, RC
Moody, PW
机构
[1] CRC Greenhouse Accounting, Brisbane, Qld, Australia
[2] Dept Nat Resources Mines & Energy, Brisbane, Qld, Australia
[3] CSIRO Land & Water, Adelaide, SA, Australia
关键词
decomposition; carbon; nitrogen; NMR; lignin;
D O I
10.1016/j.soilbio.2004.05.023
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Improved understanding of the interactive relationships of plant material decomposition kinetics to biochemical characteristics and nitrogen availability is required for terrestrial C accounting and sustainable land management. In this study, 15 typical and/or native Australian plant materials were finely ground and incubated with a sandy soil at 25 degreesC and 55% water holding capacity without nitrogen (-N) or with nitrogen (+N) addition (77 mg N kg(-1) soil as KNO3). The C mineralisation dynamics were monitored for 356 days and the initial biochemical characteristics of the plant materials were determined by NMR and wet-chemical analyses. Under the -N treatment, C mineralisation rates of the plant materials were positively correlated with their initial N contents during the first several weeks, and then negatively correlated with lignin and polyphenols contents during the late stages of incubation. Thus the ratios of lignin/N, polyphenols/N and (lignin+polyphenols)/N had more consistent correlation with the cumulative amounts of C mineralised throughout the incubation than did any single component. In terms of the C types determined by NMR analysis, the C mineralisation rates were initially related positively to carbonyl C contents, and then negatively to aryl and O-aryl C contents from day 3 onwards. Addition of NO3--N accelerated C mineralisation during the early stages, but resulted in lower cumulative C mineralisation at the end of the incubation for most plant materials. Under the +N treatment, the decomposition rates were correlated with the contents of lignin and the sum of cellulose + acid detergent-extractable non-phenolic compounds, or with aryl, O-aryl and N-alkyl + methoxyl C contents. Regardless of the N treatment, the ratios of aryl/carbonyl, O-aryl/carbonyl and (aryl + O-aryl)/carbonyl C had the closest and most consistent correlations with the cumulative C mineralisation among all biochemical indices examined. A double exponential model with defined mineralisation rate constants for the active and slow pools was used to describe the C mineralisation dynamics. The biological meanings of the kinetically estimated active and slow pool sizes are interpreted and their relationships to the initial chemical/biochemical composition of the plant materials are explored. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2045 / 2058
页数:14
相关论文
共 44 条
[1]   13C NMR assessment of decomposition patterns during composting of forest and shrub biomass [J].
Almendros, G ;
Dorado, J ;
González-Vila, FJ ;
Blanco, MJ ;
Lankes, U .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (06) :793-804
[2]  
[Anonymous], TECHNIQUES APPL GEOC
[3]   Role of the soil matrix and minerals in protecting natural organic materials against biological attack [J].
Baldock, JA ;
Skjemstad, JO .
ORGANIC GEOCHEMISTRY, 2000, 31 (7-8) :697-710
[4]   Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy [J].
Baldock, JA ;
Oades, JM ;
Nelson, PN ;
Skene, TM ;
Golchin, A ;
Clarke, P .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1997, 35 (05) :1061-1083
[5]   Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood [J].
Baldock, JA ;
Smernik, RJ .
ORGANIC GEOCHEMISTRY, 2002, 33 (09) :1093-1109
[6]   Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil [J].
Bending, GD ;
Turner, MK .
BIOLOGY AND FERTILITY OF SOILS, 1999, 29 (03) :319-327
[7]   LITTER MASS-LOSS RATES AND DECOMPOSITION PATTERNS IN SOME NEEDLE AND LEAF LITTER TYPES - LONG-TERM DECOMPOSITION IN A SCOTS PINE FOREST .7. [J].
BERG, B ;
EKBOHM, G .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1991, 69 (07) :1449-1456
[8]   Maximum decomposition limits of forest litter types: A synthesis [J].
Berg, B ;
Ekbohm, G ;
Johansson, MB ;
McClaugherty, C ;
Rutigliano, F ;
DeSanto, AV .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1996, 74 (05) :659-672
[9]   Nutrient Release from Litter and Humus in Coniferous Forest Soils-a Mini Review [J].
Berg, Bjorn .
SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 1986, 1 (1-4) :359-369
[10]  
Carreiro MM, 2000, ECOLOGY, V81, P2359, DOI 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO