The LixNi1-yMgyO2 (y=0.05, 0.10) system:: structural modifications observed upon cycling

被引:143
作者
Pouillerie, C
Croguennec, L
Delmas, C
机构
[1] CNRS, Inst Chim Mat Condensee Bordeaux, F-33608 Pessac, France
[2] Ecole Natl Super Chim & Phys Bordeaux, F-33608 Pessac, France
[3] SAFT, Direct Rech, F-33074 Bordeaux, France
关键词
magnesium; LiNiO2; derivatives; positive electrode materials; lithium batteries; layered oxides; intercalation;
D O I
10.1016/S0167-2738(00)00699-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed structural characterization of deintercalated LixNi1-yMgyO2 (y = 0.05 and 0.10) phases was performed in order to determine the effect of magnesium substitution for nickel on the structural evolution upon cycling. For both systems, a solid solution exists over the entire lithium-composition domain, which shows that substitution of 5% of magnesium for nickel is high enough to suppress the phase transitions observed for LixNiO2 during the cycling process. Rietveld refinement of the XRD patterns of the materials recovered after one cycle with an intermediate floating at high potential (4.35 V) or after 50 cycles (between 2.7 and 4.15 V), gave evidence for the migration of all the Mg2+ ions from the slab to the interslab space during the electrochemical process. This cationic displacement is responsible for the existence of a small irreversible capacity at the end of the first discharge. However, Mg2+ cations do not induce any local collapse of the interslab space as is observed for the LixNi1+zO2 systems when the Ni2+ ions present in the interslab space are oxidized. It is assumed that the presence of Mg2+ ions in the lithium sites reduces the cell parameters changes upon cycling and, therefore, is at the origin of the improvement of the cycling properties observed for the magnesium substituted positive electrode materials. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 41 条
  • [1] Reversibility of LiNiO2 cathode
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1997, 95 (3-4) : 275 - 282
  • [2] Thermal behavior of Li1-yNiO2 and the decomposition mechanism
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1998, 109 (3-4) : 295 - 302
  • [3] CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD
    ARAI, H
    OKADA, S
    OHTSUKA, H
    ICHIMURA, M
    YAMAKI, J
    [J]. SOLID STATE IONICS, 1995, 80 (3-4) : 261 - 269
  • [4] LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS
    BROUSSELY, M
    PERTON, F
    LABAT, J
    STANIEWICZ, RJ
    ROMERO, A
    [J]. JOURNAL OF POWER SOURCES, 1993, 43 (1-3) : 209 - 216
  • [5] LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES
    BROUSSELY, M
    PERTON, F
    BIENSAN, P
    BODET, JM
    LABAT, J
    LECERF, A
    DELMAS, C
    ROUGIER, A
    PERES, JP
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (01) : 109 - 114
  • [6] CAPITAINE F, UNPUB J ELECTROCHEM
  • [7] NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate:: Structural modifications
    Croguennec, L
    Pouillerie, C
    Delmas, C
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1314 - 1321
  • [8] CROUGUENNEC L, IN PRESS J MAT CHEM
  • [9] THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS
    DAHN, JR
    FULLER, EW
    OBROVAC, M
    VONSACKEN, U
    [J]. SOLID STATE IONICS, 1994, 69 (3-4) : 265 - 270
  • [10] RECHARGEABLE LINIO2 CARBON CELLS
    DAHN, JR
    VONSACKEN, U
    JUZKOW, MW
    ALJANABY, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) : 2207 - 2211