Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems

被引:42
作者
Gafiychuk, V. V.
Datsko, B. Y.
机构
[1] CUNY, Coll Technol, Dept Phys, Brooklyn, NY 11201 USA
[2] Natl Acad Sci Ukraine, Inst Appl Problems Mech & Math, UA-79053 Lvov, Ukraine
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.055201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear stage of stability is studied for a two-component fractional reaction-diffusion system. It is shown that, with a certain value of the fractional derivative index, a different type of instability occurs. The linear stability analysis shows that the system becomes unstable toward perturbations of finite wave number. As a result, inhomogeneous oscillations with this wave number become unstable and lead to nonlinear oscillations which result in spatial oscillatory structure formation. A computer simulation of a Bonhoeffer-van der Pol type of reaction-diffusion system with fractional time derivatives is performed.
引用
收藏
页数:4
相关论文
共 26 条
[1]  
Adamatzky A., 2005, Reaction-diffusion computers
[2]  
Asai T., 2005, INT J UNCONV COMPUT, V1, P123
[3]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[4]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[5]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[6]  
GAFIYCHUK V, NLINAO0611005
[7]  
GAFIYCHUK V, NLINPS0702013
[8]   Pattern formation in a fractional reaction-diffusion system [J].
Gafiychuk, V. V. ;
Datsko, B. Yo. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) :300-306
[9]   Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations [J].
Henry, B. I. ;
Langlands, T. A. M. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2006, 74 (03)
[10]   Turing pattern formation in fractional activator-inhibitor systems [J].
Henry, BI ;
Langlands, TAM ;
Wearne, SL .
PHYSICAL REVIEW E, 2005, 72 (02)