Optimal designs for group sequential clinical trials

被引:12
作者
Chang, MN [1 ]
机构
[1] UNIV FLORIDA,DEPT STAT,GAINESVILLE,FL 32611
关键词
admissible design; admissible design surface; average sample size; Bayes solution; backward induction;
D O I
10.1080/03610929608831700
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Group sequential tests have seen wide use in clinical trials. In this article a group sequential design is referred to an optimal one if the expected sample size under a specified alternative is minimized for a given choice of significance level and power among tests with a given sequence of groups of specific sizes. The optimal designs provide a standard for assessing the efficiency of many designs in the literature. This article concerns optimal two-sided tests with acceptance regions of the null hypothesis at early stages. We show that the backward induction method can be applied to compute optimal designs for group sequential tests. Subsequently we develop a numerical iterative procedure to compute the stopping boundaries of two-sided optimal sequential tests. Some numerical results are presented. The method can be generalized to one-sided tests and to two-sided tests without acceptance regions of the null hypothesis at early stages.
引用
收藏
页码:361 / 379
页数:19
相关论文
共 12 条
[1]   AN IMPROVED METHOD FOR DERIVING OPTIMAL ONE-SIDED GROUP SEQUENTIAL-TESTS [J].
EALES, JD ;
JENNISON, C .
BIOMETRIKA, 1992, 79 (01) :13-24
[2]   SYMMETRIC GROUP SEQUENTIAL TEST DESIGNS [J].
EMERSON, SS ;
FLEMING, TR .
BIOMETRICS, 1989, 45 (03) :905-923
[3]   EFFICIENT GROUP SEQUENTIAL-TESTS WITH UNPREDICTABLE GROUP SIZES [J].
JENNISON, C .
BIOMETRIKA, 1987, 74 (01) :155-165
[4]  
JENNISON C, 1989, J R STAT SOC B, V51, P305
[5]  
KIEFER J, 1957, ANN MATH STAT, V25, P57
[6]  
LEHMANN EL, 1959, TESTING STATISTICAL
[7]   MULTIPLE TESTING PROCEDURE FOR CLINICAL-TRIALS [J].
OBRIEN, PC ;
FLEMING, TR .
BIOMETRICS, 1979, 35 (03) :549-556
[8]   INTERIM ANALYSES FOR RANDOMIZED CLINICAL-TRIALS - THE GROUP SEQUENTIAL APPROACH [J].
POCOCK, SJ .
BIOMETRICS, 1982, 38 (01) :153-162
[9]   GROUP SEQUENTIAL METHODS IN DESIGN AND ANALYSIS OF CLINICAL-TRIALS [J].
POCOCK, SJ .
BIOMETRIKA, 1977, 64 (02) :191-200
[10]   OPTIMAL DESIGNS FOR A GROUPED SEQUENTIAL BINOMIAL TRIAL [J].
THERNEAU, TM ;
WIEAND, HS ;
CHANG, M .
BIOMETRICS, 1990, 46 (03) :771-781