Turning on and off recurrent balanced cortical activity

被引:786
作者
Shu, YS [1 ]
Hasenstaub, A [1 ]
McCormick, DA [1 ]
机构
[1] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature01616
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The vast majority of synaptic connections onto neurons in the cerebral cortex arise from other cortical neurons, both excitatory and inhibitory, forming local and distant 'recurrent' networks. Although this is a basic theme of cortical organization, its study has been limited largely to theoretical investigations, which predict that local recurrent networks show a proportionality or balance between recurrent excitation and inhibition, allowing the generation of stable periods of activity(1-5). This recurrent activity might underlie such diverse operations as short-term memory(4,6,7), the modulation of neuronal excitability with attention(8,9), and the generation of spontaneous activity during sleep(5,10-14). Here we show that local cortical circuits do indeed operate through a proportional balance of excitation and inhibition generated through local recurrent connections, and that the operation of such circuits can generate self-sustaining activity that can be turned on and off by synaptic inputs. These results confirm the long-hypothesized role of recurrent activity as a basic operation of the cerebral cortex.
引用
收藏
页码:288 / 293
页数:7
相关论文
共 30 条
[1]   Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex [J].
Anderson, JS ;
Carandini, M ;
Ferster, D .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :909-926
[2]   The contribution of noise to contrast invariance of orientation tuning in cat visual cortex [J].
Anderson, JS ;
Lampl, I ;
Gillespie, DC ;
Ferster, D .
SCIENCE, 2000, 290 (5498) :1968-1972
[3]   SYNAPTIC BACKGROUND ACTIVITY INFLUENCES SPATIOTEMPORAL INTEGRATION IN SINGLE PYRAMIDAL CELLS [J].
BERNANDER, O ;
DOUGLAS, RJ ;
MARTIN, KAC ;
KOCH, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11569-11573
[4]   Visual input evokes transient and strong shunting inhibition in visual cortical neurons [J].
Borg-Graham, LJ ;
Monier, C ;
Frégnac, Y .
NATURE, 1998, 393 (6683) :369-373
[5]   Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition [J].
Brunel, N ;
Wang, XJ .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2001, 11 (01) :63-85
[6]   SUMMATION AND DIVISION BY NEURONS IN PRIMATE VISUAL-CORTEX [J].
CARANDINI, M ;
HEEGER, DJ .
SCIENCE, 1994, 264 (5163) :1333-1336
[7]   Gain modulation from background synaptic input [J].
Chance, FS ;
Abbott, LF ;
Reyes, AD .
NEURON, 2002, 35 (04) :773-782
[8]   Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model [J].
Compte, A ;
Sanchez-Vives, MV ;
McCormick, DA ;
Wang, XJ .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (05) :2707-2725
[9]  
COMPTE A, UNPUB J NEUROPHYSIOL
[10]   2 INHIBITORY POSTSYNAPTIC POTENTIALS, AND GABAA AND GABAB RECEPTOR-MEDIATED RESPONSES IN NEOCORTEX OF RAT AND CAT [J].
CONNORS, BW ;
MALENKA, RC ;
SILVA, LR .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 406 :443-468