A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription

被引:105
作者
Chang, DC
Reppert, SM
机构
[1] Univ Massachusetts, Med Ctr, Dept Neurobiol, Worcester, MA 01605 USA
[2] Harvard Univ, Sch Med, Program Neurosci, Boston, MA 02114 USA
关键词
D O I
10.1016/S0960-9822(03)00286-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The essence of the Drosophila circadian clock involves an autoregulatory feedback loop in which PERIOD (PER) and TIMELESS (TIM) inhibit their own transcription by association with the transcriptional activators dCLOCK (dCLK) and CYCLE (CYC) [1]. Because PER, dCLK, and CYC each contain a PAS domain [1], it has been assumed that these interaction domains are important for negative feedback. However, a critical role for PAS-PAS interactions in Drosophila clock function has not been shown. Nuclear transport of PER is also believed to be an essential regulatory step for negative feedback [1-3], but this has not been directly tested, and the relevant nuclear localization sequence (NLS) has not been functionally mapped. We evaluated these critical aspects of PER-mediated transcriptional inhibition in Drosophila Schneider 2 (S2) cells. We mapped the dCLK:CYC inhibition domain (CCID) of PER and discovered that it lies in the C terminus, downstream of the PAS domain. Using deletion mutants and site-directed mutagenesis, we identified a novel NLS in the CCID of PER that is a potent regulator of PER's nuclear transport in S2 cells. We further found that nuclear transport, primarily through this novel NLS, is essential for the inhibitory activity of PER. The data indicate that nuclear PER inhibits dCLK:CYC-mediated transcription through a novel domain that additionally contains a potent NLS.
引用
收藏
页码:758 / 762
页数:5
相关论文
共 17 条
[1]  
BAYLIES MK, 1993, MOL GENETICS BIOL RH, P123
[2]   INTERSPECIFIC COMPARISON OF THE PERIOD GENE OF DROSOPHILA REVEALS LARGE BLOCKS OF NON-CONSERVED CODING DNA [J].
COLOT, HV ;
HALL, JC ;
ROSBASH, M .
EMBO JOURNAL, 1988, 7 (12) :3929-3937
[3]   TEMPORALLY REGULATED NUCLEAR ENTRY OF THE DROSOPHILA PERIOD PROTEIN CONTRIBUTES TO THE CIRCADIAN CLOCK [J].
CURTIN, KD ;
HUANG, ZJ ;
ROSBASH, M .
NEURON, 1995, 14 (02) :365-372
[4]   Closing the circadian loop:: CLOCK-induced transcription of its own inhibitors per and tim [J].
Darlington, TK ;
Wager-Smith, K ;
Ceriani, MF ;
Staknis, D ;
Gekakis, N ;
Steeves, TDL ;
Weitz, CJ ;
Takahashi, JS ;
Kay, SA .
SCIENCE, 1998, 280 (5369) :1599-1603
[5]   ISOLATION OF TIMELESS BY PER PROTEIN-INTERACTION - DEFECTIVE INTERACTION BETWEEN TIMELESS PROTEIN AND LONG-PERIOD MUTANT PER(L) [J].
GEKAKIS, N ;
SAEZ, L ;
DELAHAYEBROWN, AM ;
MYERS, MP ;
SEHGAL, A ;
YOUNG, MW ;
WEITZ, CJ .
SCIENCE, 1995, 270 (5237) :811-815
[6]   Transport between the cell nucleus and the cytoplasm [J].
Görlich, D ;
Kutay, U .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :607-660
[7]   PAS IS A DIMERIZATION DOMAIN COMMON TO DROSOPHILA PERIOD AND SEVERAL TRANSCRIPTION FACTORS [J].
HUANG, ZJ ;
EDERY, I ;
ROSBASH, M .
NATURE, 1993, 364 (6434) :259-262
[8]   The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε [J].
Kloss, B ;
Price, JL ;
Saez, L ;
Blau, J ;
Rothenfluh, A ;
Wesley, CS ;
Young, MW .
CELL, 1998, 94 (01) :97-107
[9]  
Lee C, 1999, MOL CELL BIOL, V19, P5316
[10]  
Piccin A, 2000, GENETICS, V154, P747