On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems

被引:40
作者
Castro Diaz, M. J.
Chacon Rebollo, T.
Fernandez-Nieto, E. D.
Pares, Carlos
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Seville, Dept Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
[3] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
关键词
well-balanced finite volume method; upwinding; shallow water; source terms; two-layer flows;
D O I
10.1137/040607642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce a general family of finite volume methods for nonhomogeneous hyperbolic systems with nonconservative terms. We prove that all of them are "asymptotically well-balanced": they preserve all smooth stationary solutions in all the domain except for a set whose measure tends to zero as Delta x tends to zero. This theory is applied to solve the bilayer shallow-water equations with arbitrary cross-section. Finally, some numerical tests are presented for simplified but meaningful geometries, comparing the computed solution with approximated asymptotic analytical solutions.
引用
收藏
页码:1093 / 1126
页数:34
相关论文
共 21 条
  • [1] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [2] A Q-scheme for a class of systems of coupled conservation laws with source term.: Application to a two-layer 1-D shallow water system
    Castro, M
    Macías, J
    Parés, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 107 - 127
  • [3] Numerical simulation of two-layer shallow water flows through channels with irregular geometry
    Castro, MJ
    García-Rodríguez, JA
    González-Vida, JM
    Macías, J
    Parés, C
    Vázquez-Cendón, ME
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) : 202 - 235
  • [4] CASTRO MJ, 2001, P ECCOMAS 2001 SWAN, P241
  • [5] DalMaso G, 1995, J MATH PURE APPL, V74, P483
  • [6] MAXIMAL 2-LAYER EXCHANGE OVER A SILL AND THROUGH THE COMBINATION OF A SILL AND CONTRACTION WITH BAROTROPIC FLOW
    FARMER, DM
    ARMI, L
    [J]. JOURNAL OF FLUID MECHANICS, 1986, 164 : 53 - +
  • [7] FERNANDEZ ED, 2003, THESIS U SEVILLA SPA
  • [8] FOWLER AC, 1997, MATH MODEL APPL SCI
  • [9] Godlewski E., 1996, NUMERICAL APPROXIMAT
  • [10] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations
    Greenberg, JM
    Leroux, AY
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 1 - 16