Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems

被引:76
作者
John, V
Maubach, JM
Tobiska, L
机构
[1] Univ Magdeburg, Inst Anal & Numer, D-39016 Magdeburg, Germany
[2] Univ Pittsburgh, Dept Math & Stat, Pittsburgh, PA 15260 USA
关键词
D O I
10.1007/s002110050309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze nonconforming finite element approximations of streamline-diffusion type for solving convection-diffusion problems. Both the theoretical and numerical investigations show that additional jump terms have to be added in the nonconforming case in order to get the same O(h(k+1/2)) order of convergence in L-2 as in the conforming case for convection dominated problems. A rigorous error analysis supported by numerical experiments is given.
引用
收藏
页码:165 / 188
页数:24
相关论文
共 23 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], RAIRO R
[3]  
CIARLET PG, 1991, HDB NUMERICAL ANAL, V2, P19
[4]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[5]  
DOROK O, 1995, THESIS O VONGUERICKE
[6]  
DOROK O, 1994, NUMERICAL METHODS NA, P20
[7]  
Dorok O., 1996, Notes on Numerical Fluid Mechanics, V52, P20
[8]  
ERIKSSON K, 1993, MATH COMPUT, V60, P167, DOI 10.1090/S0025-5718-1993-1149289-9
[9]  
HUGHES T, 1979, MULTIDIMENSIONAL UPW, V34
[10]  
JOHNSON C, 1987, MATH COMPUT, V49, P25, DOI 10.1090/S0025-5718-1987-0890252-8