Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter

被引:211
作者
Vigeolas, Helene
Waldeck, Peter
Zank, Thorsten
Geigenberger, Peter
机构
[1] Max PLanck Inst Mol Plant Physiol, D-14476 Golm, Germany
[2] BASF Plant Sci GmbH, D-67117 Limburgerhof, Germany
关键词
biofuel; oil content; transgenic crops; metabolic regulation;
D O I
10.1111/j.1467-7652.2007.00252.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase (gpd1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.
引用
收藏
页码:431 / 441
页数:11
相关论文
共 70 条
[1]   PURIFICATION AND CHARACTERIZATION OF GLYCEROL-3-PHOSPHATE DEHYDROGENASE OF SACCHAROMYCES-CEREVISIAE [J].
ALBERTYN, J ;
VANTONDER, A ;
PRIOR, BA .
FEBS LETTERS, 1992, 308 (02) :130-132
[2]   REGULATION OF TRIACYLGLYCEROL BIOSYNTHESIS IN EMBRYOS AND MICROSOMAL PREPARATIONS FROM THE DEVELOPING SEEDS OF CUPHEA-LANCEOLATA [J].
BAFOR, M ;
JONSSON, L ;
STOBART, AK ;
STYMNE, S .
BIOCHEMICAL JOURNAL, 1990, 272 (01) :31-38
[3]   IDENTIFICATION OF AN OPERON INVOLVED IN SULFOLIPID BIOSYNTHESIS IN RHODOBACTER-SPHAEROIDES [J].
BENNING, C ;
SOMERVILLE, CR .
JOURNAL OF BACTERIOLOGY, 1992, 174 (20) :6479-6487
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Genetic engineering of plant lipids [J].
Broun, P ;
Gettner, S ;
Somerville, C .
ANNUAL REVIEW OF NUTRITION, 1999, 19 :197-216
[7]   DIACYLGLYCEROL ACYLTRANSFERASE IN MATURING OIL SEEDS OF MAIZE AND OTHER SPECIES [J].
CAO, YZ ;
HUANG, AHC .
PLANT PHYSIOLOGY, 1986, 82 (03) :813-820
[8]  
*CRB, 2005, CRB COMM YB
[9]  
*CRB, 2006, CRB COMM YB
[10]   Starch metabolism in developing embryos of oilseed rape [J].
daSilva, PMFR ;
Eastmond, PJ ;
Hill, LM ;
Smith, AM ;
Rawsthorne, S .
PLANTA, 1997, 203 (04) :480-487