Disulfide folding pathways of cystine knot proteins - Tying the knot within the circular backbone of the cyclotides

被引:117
作者
Daly, NL [1 ]
Clark, RJ [1 ]
Craik, DJ [1 ]
机构
[1] Univ Queensland, Australian Res Council, Ctr Funct & Appl Genom, Inst Mol Biosci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1074/jbc.M210492200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (LeNguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.
引用
收藏
页码:6314 / 6322
页数:9
相关论文
共 52 条
[1]  
[Anonymous], [No title captured]
[2]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[3]   THE REFINED 2.0 A X-RAY CRYSTAL-STRUCTURE OF THE COMPLEX FORMED BETWEEN BOVINE BETA-TRYPSIN AND CMTI-I, A TRYPSIN-INHIBITOR FROM SQUASH SEEDS (CUCURBITA-MAXIMA) - TOPOLOGICAL SIMILARITY OF THE SQUASH SEED INHIBITORS WITH THE CARBOXYPEPTIDASE A INHIBITOR FROM POTATOES [J].
BODE, W ;
GREYLING, HJ ;
HUBER, R ;
OTLEWSKI, J ;
WILUSZ, T .
FEBS LETTERS, 1989, 242 (02) :285-292
[4]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[5]   New applications of simulated annealing in X-ray crystallography and solution NMR [J].
Brunger, AT ;
Adams, PD ;
Rice, LM .
STRUCTURE, 1997, 5 (03) :325-336
[6]   A major kinetic trap for the oxidative folding of human epidermal growth factor [J].
Chang, JY ;
Li, L ;
Lai, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :4845-4852
[7]   The underlying mechanism for the diversity of disulfide folding pathways [J].
Chang, JY ;
Li, L ;
Bulychev, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8287-8289
[8]   Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif [J].
Craik, DJ ;
Daly, NL ;
Bond, T ;
Waine, C .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1327-1336
[9]   Plant cyclotides: circular, knotted peptide toxins [J].
Craik, DJ .
TOXICON, 2001, 39 (12) :1809-1813
[10]   The cystine knot motif in toxins and implications for drug design [J].
Craik, DJ ;
Daly, NL ;
Waine, C .
TOXICON, 2001, 39 (01) :43-60