Robust practical point stabilization of a nonholonomic mobile robot using neural networks

被引:20
作者
Fierro, R [1 ]
Lewis, FL [1 ]
机构
[1] Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
关键词
nonholonomic systems; mobile robots; neural networks;
D O I
10.1023/A:1007916529436
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A control structure that makes possible the integration of a kinematic controller and a neural network (NN) computed-torque controller for nonholonomic mobile robots is presented. A combined kinematic/torque control law is developed and stability is guaranteed by Lyapunov theory. This control algorithm is applied to the practical point stabilization problem i.e., stabilization to a small neighborhood of the origin. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics in the vehicle. On-line NN weight tuning algorithms that do not require off-line learning yet guarantee small tracking errors and bounded control signals are utilized.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 29 条
[1]  
BARRAQUAND J, 1991, 1991 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, P2328, DOI 10.1109/ROBOT.1991.131750
[2]  
BERNS K, 1991, P IEEE INT C ROB AUT, V3, P2426
[3]   CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS [J].
BLOCH, AM ;
REYHANOGLU, M ;
MCCLAMROCH, NH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1746-1757
[4]  
Brockett R.W., 1983, Differential Geometric Control Theory, V27, P181
[5]  
CAMPION G, 1991, LECT NOTES CONTR INF, V162, P106
[6]   ADAPTIVELY CONTROLLING NONLINEAR CONTINUOUS-TIME SYSTEMS USING MULTILAYER NEURAL NETWORKS [J].
CHEN, FC ;
LIU, CC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) :1306-1310
[7]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[8]  
DEWIT CC, 1995, P 3 EUR CONTR C ROM, P2630
[9]  
Fierro R, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P3805, DOI 10.1109/CDC.1995.479190
[10]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366