Sturm-Liouville wavelets

被引:7
作者
Depczynski, U [1 ]
机构
[1] Univ Hohenheim, Inst Angew Math & Stat, D-70593 Stuttgart, Germany
关键词
D O I
10.1006/acha.1997.0231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a new construction of wavelet-like functions on a compact interval [a, b] subset of R. Our approach of localizing multiscale decomposition of weighted L-2-spaces L2,(rho)([a, b]) is based on eigenfunctions of regular Sturm-Liouville boundary value problems, and was introduced and analyzed in Depczynski (1995). The asymptotic properties of such eigenfunctions yield localizing and stable bases, which prove to be very useful in time-frequency analysis. For specific types of eigenfunctions, fast algorithms are presented. (C) 1998 Academic Press.
引用
收藏
页码:216 / 247
页数:32
相关论文
共 18 条
  • [1] [Anonymous], 1960, LECT DIFFERENTIAL IN
  • [2] Birkhoff G., 1969, Ordinary differential equations, V2
  • [3] ON TRIGONOMETRIC WAVELETS
    CHUI, CK
    MHASKAR, HN
    [J]. CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) : 167 - 190
  • [4] CHUI CK, 1992, INT S NUM M, V105, P53
  • [5] Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
  • [6] Conway J.B., 2019, COURSE FUNCTIONAL AN, V96
  • [7] DEPCZYNSKI U, 1996, ADV TOPICS MULTIVARI, P57
  • [8] DEPCZYNSKI U, 1997, 15 IMACS WORLD C SCI, V1, P87
  • [9] DEPCZYNSKI U, 1995, THESIS U DUISBURG DU
  • [10] Wavelets based on orthogonal polynomials
    Fischer, B
    Prestin, J
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (220) : 1593 - 1618