Conformational entropy in molecular recognition by proteins

被引:556
作者
Frederick, Kendra King
Marlow, Michael S.
Valentine, Kathleen G.
Wand, A. Joshua [1 ]
机构
[1] Univ Penn, Johnson Res Fdn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
D O I
10.1038/nature05959
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular recognition by proteins is fundamental to almost every biological process, particularly the protein associations underlying cellular signal transduction. Understanding the basis for protein-protein interactions requires the full characterization of the thermodynamics of their association. Historically it has been virtually impossible to experimentally estimate changes in protein conformational entropy, a potentially important component of the free energy of protein association. However, nuclear magnetic resonance spectroscopy has emerged as a powerful tool for characterizing the dynamics of proteins. Here we employ changes in conformational dynamics as a proxy for corresponding changes in conformational entropy. We find that the change in internal dynamics of the protein calmodulin varies significantly on binding a variety of target domains. Surprisingly, the apparent change in the corresponding conformational entropy is linearly related to the change in the overall binding entropy. This indicates that changes in protein conformational entropy can contribute significantly to the free energy of protein-ligand association.
引用
收藏
页码:325 / U3
页数:6
相关论文
共 34 条
[1]   NMR ORDER PARAMETERS AND FREE-ENERGY - AN ANALYTICAL APPROACH AND ITS APPLICATION TO COOPERATIVE CA2+ BINDING BY CALBINDIN-D(9K) [J].
AKKE, M ;
BRUSCHWEILER, R ;
PALMER, AG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9832-9833
[2]   What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis [J].
Best, RB ;
Clarke, J ;
Karplus, M .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 349 (01) :185-203
[3]   The origin of protein sidechain order parameter distributions [J].
Best, RB ;
Clarke, J ;
Karplus, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7734-7735
[4]   Energetics of target peptide binding by calmodulin reveals different modes of binding [J].
Brokx, RD ;
Lopez, MM ;
Vogel, HJ ;
Makhatadze, GI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (17) :14083-14091
[5]  
Cavanagh J, 2007, PROTEIN NMR SPECTROSCOPY: PRINCIPLES AND PRACTICE, 2ND EDITION, P1
[6]   EVIDENCE FOR DOMAIN ORGANIZATION WITHIN THE 61-KDA CALMODULIN-DEPENDENT CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE FROM BOVINE BRAIN [J].
CHARBONNEAU, H ;
KUMAR, S ;
NOVACK, JP ;
BLUMENTHAL, DK ;
GRIFFIN, PR ;
SHABANOWITZ, J ;
HUNT, DF ;
BEAVO, JA ;
WALSH, KA .
BIOCHEMISTRY, 1991, 30 (32) :7931-7940
[7]   Insights into the mobility of methyl-bearing side chains in proteins from 3JCC and 3JCN couplings [J].
Chou, JJ ;
Case, DA ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (29) :8959-8966
[8]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[9]   ALLOSTERY WITHOUT CONFORMATIONAL CHANGE - A PLAUSIBLE MODEL [J].
COOPER, A ;
DRYDEN, DTF .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1984, 11 (02) :103-109
[10]   MODEL-INDEPENDENT AND MODEL-DEPENDENT ANALYSIS OF THE GLOBAL AND INTERNAL DYNAMICS OF CYCLOSPORINE-A [J].
DELLWO, MJ ;
WAND, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (13) :4571-4578