Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics

被引:22
作者
Viana, SA [1 ]
Rodger, D [1 ]
Lai, HC [1 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
关键词
Approximation theory - Boundary conditions - Finite element method - Functions - Galerkin methods - Mathematical models - Mechanics - Partial differential equations - Polynomials;
D O I
10.1049/ip-smt:20040860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Meshless methods are a new class of numerical techniques for solving partial differential equations and have attracted considerable attention in computational mechanics in recent years. Owing to the 'mesh-free' characteristic, these methods offer some advantages over the conventional mesh-based finite-element techniques. A formulation for the meshless local Petrov-Galerkin method is described and its application to electromagnetic modelling investigated.
引用
收藏
页码:449 / 451
页数:3
相关论文
共 6 条
[1]  
Atluri SN, 2002, CMES-COMP MODEL ENG, V3, P11
[2]   Application of a meshless method in electromagnetics [J].
Ho, SL ;
Yang, S ;
Machado, JM ;
Wong, HC .
IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) :3198-3202
[3]  
Liu G.R., 2003, MESH FREE METHODS MO
[4]  
Nayroles B., 1992, Comput. Mech., V10, P307, DOI DOI 10.1007/BF00364252
[5]   Moving least square reproducing kernel method for electromagnetic field computation [J].
Viana, SA ;
Mesquita, RC .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1372-1375
[6]   A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions [J].
Xiao, JR ;
McCarthy, MA .
COMPUTATIONAL MECHANICS, 2003, 31 (3-4) :301-315