Synthetic control methodology as a tool for evaluating population-level health interventions

被引:117
作者
Bouttell, Janet [1 ]
Craig, Peter [2 ]
Lewsey, James [1 ]
Robinson, Mark [3 ]
Popham, Frank [2 ]
机构
[1] Univ Glasgow, Inst Hlth & Wellbeing, Hlth Econ & Hlth Technol Assessment, Glasgow G12 8RZ, Lanark, Scotland
[2] Univ Glasgow, Inst Hlth & Wellbeing, MRC CSO Social & Publ Hlth Sci Unit, Glasgow, Lanark, Scotland
[3] NHS Hlth Scotland, Publ Hlth Observ, Glasgow, Lanark, Scotland
基金
英国医学研究理事会;
关键词
TRANS FAT; DECREASE; COVERAGE;
D O I
10.1136/jech-2017-210106
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background Many public health interventions cannot be evaluated using randomised controlled trials so they rely on the assessment of observational data. Techniques for evaluating public health interventions using observational data include interrupted time series analysis, panel data regression-based approaches, regression discontinuity and instrumental variable approaches. The inclusion of a counterfactual improves causal inference for approaches based on time series analysis, but the selection of a suitable counterfactual or control area can be problematic. The synthetic control method builds a counterfactual using a weighted combination of potential control units. Methods We explain the synthetic control method, summarise its use in health research to date, set out its advantages, assumptions and limitations and describe its implementation through a case study of life expectancy following German reunification. Results Advantages of the synthetic control method are that it offers an approach suitable when there is a small number of treated units and control units and it does not rely on parallel preimplementation trends like difference in difference methods. The credibility of the result relies on achieving a good preimplementation fit for the outcome of interest between treated unit and synthetic control. If a good preimplementation fit is established over an extended period of time, a discrepancy in the outcome variable following the intervention can be interpreted as an intervention effect. It is critical that the synthetic control is built from a pool of potential controls that are similar to the treated unit. There is currently no consensus on what constitutes a 'good fit' or how to judge similarity. Traditional statistical inference is not appropriate with this approach, although alternatives are available. From our review, we noted that the synthetic control method has been underused in public health. Conclusions Synthetic control methods are a valuable addition to the range of approaches for evaluating public health interventions when randomisation is impractical. They deserve to be more widely applied, ideally in combination with other methods so that the dependence of findings on particular assumptions can be assessed.
引用
收藏
页码:673 / 678
页数:6
相关论文
共 40 条
[1]   The economic costs of conflict: A case study of the Basque Country [J].
Abadie, A ;
Gardeazabal, J .
AMERICAN ECONOMIC REVIEW, 2003, 93 (01) :113-132
[2]   Comparative Politics and the Synthetic Control Method [J].
Abadie, Alberto ;
Diamond, Alexis ;
Hainmueller, Jens .
AMERICAN JOURNAL OF POLITICAL SCIENCE, 2015, 59 (02) :495-510
[3]   Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program [J].
Abadie, Alberto ;
Diamond, Alexis ;
Hainmueller, Jens .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) :493-505
[4]  
Alavuotunki K, 2015, GEN BUDGET SUPPORT H
[5]   Health Behaviors, Mental Health, and Health Care Utilization Among Single Mothers After Welfare Reforms in the 1990s [J].
Basu, Sanjay ;
Rehkopf, David H. ;
Siddiqi, Arjumand ;
Glymour, M. Maria ;
Kawachi, Ichiro .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 183 (06) :531-538
[6]   The effect of school district nutrition policies on dietary intake and overweight: A synthetic control approach [J].
Bauhoff, Sebastian .
ECONOMICS & HUMAN BIOLOGY, 2014, 12 :45-55
[7]   The impact of a 'soda tax' on prices: evidence from French micro data [J].
Berardi, Nicoletta ;
Sevestre, Patrick ;
Tepaut, Marine ;
Vigneron, Alexandre .
APPLIED ECONOMICS, 2016, 48 (41) :3976-3994
[8]   Financial incentives for kidney donation: A comparative case study using synthetic controls [J].
Bilgel, Firat ;
Galle, Brian .
JOURNAL OF HEALTH ECONOMICS, 2015, 43 :103-117
[9]  
Chelwa G, 2016, TOB CONTROL, V26
[10]   MONEY TRANSFER AND BIRTH WEIGHT: EVIDENCE FROM THE ALASKA PERMANENT FUND DIVIDEND [J].
Chung, Wankyo ;
Ha, Hyungserk ;
Kim, Beomsoo .
ECONOMIC INQUIRY, 2016, 54 (01) :576-590