Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli

被引:82
作者
Fleischer, Rebecca
Heermann, Ralf
Jung, Kirsten
Hunke, Sabine
机构
[1] Humboldt Univ, Inst Biol, Abt Physiol Mikroorganismen, D-10115 Berlin, Germany
[2] Univ Munich, Dept Biol 1, Bereich Mikrobiol, D-80638 Munich, Germany
关键词
D O I
10.1074/jbc.M605785200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli the Cpx sensor regulator system senses different kinds of envelope stress and responds by triggering the expression of periplasmic folding factors and proteases. It consists of the membrane-anchored sensor kinase CpxA, the response regulator CpxR, and the periplasmic protein CpxP. The Cpx pathway is induced in vivo by a variety of signals including pH variation, osmotic stress, and misfolded envelope proteins and is inhibited by overproduced CpxP. Because it is not clear how the Cpx pathway is able to recognize and correspond to so many different signals we overproduced, solubilized, purified, and incorporated the complete membrane-integral CpxA protein into proteoliposomes to analyze its biochemical properties in more detail. Autokinase and phosphotransfer activities of the reconstituted CpxA-His, protein were stimulated by KCI. NaCl also stimulated the activities but to a lesser extent. Other osmotic active solutes as glycine betaine, sucrose, and proline had no effect. The system was further characterized by testing for susceptibility to sensor kinase inhibitors. Among these, Closantel inhibited the activities of solubilized but not of the reconstituted CpxA-HiS(6) protein. We further analyzed the effect of CpxP on CpxA activities. Purified tagless CpxP protein reduced the phosphorylation status of CpxA to 50% but had no effect on CpxA phosphotransfer or phosphatase activities. As the in vitro system excludes the involvement of other factors our finding is the first biochemical evidence for direct protein-protein interaction between the sensor kinase CpxA and the periplasmic protein CpxP resulting in a down-regulation of the autokinase activity of CpxA.
引用
收藏
页码:8583 / 8593
页数:11
相关论文
共 40 条
[1]   Antibacterial agents that inhibit two-component signal transduction systems [J].
Barrett, JF ;
Goldschmidt, RM ;
Lawrence, LE ;
Foleno, B ;
Chen, R ;
Demers, JP ;
Johnson, S ;
Kanojia, R ;
Fernandez, J ;
Bernstein, J ;
Licata, L ;
Donetz, A ;
Huang, S ;
Hlasta, DJ ;
Macielag, MJ ;
Ohemeng, K ;
Frechette, R ;
Frosco, MB ;
Klaubert, DH ;
Whiteley, JM ;
Wang, L ;
Hoch, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5317-5322
[2]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[3]   Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP [J].
Buelow, DR ;
Raivio, TL .
JOURNAL OF BACTERIOLOGY, 2005, 187 (19) :6622-6630
[4]   CpxP, a stress-combative member of the Cpx regulon [J].
Danese, PN ;
Silhavy, TJ .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :831-839
[5]   THE CPX 2-COMPONENT SIGNAL-TRANSDUCTION PATHWAY OF ESCHERICHIA-COLI REGULATES TRANSCRIPTION OF THE GENE SPECIFYING THE STRESS-INDUCIBLE PERIPLASMIC PROTEASE, DEGP [J].
DANESE, PN ;
SNYDER, WB ;
COSMA, CL ;
DAVIS, LJB ;
SILHAVY, TJ .
GENES & DEVELOPMENT, 1995, 9 (04) :387-398
[6]   The CpxRA signal transduction system of Escherichia coli:: Growth-related autoactivation and control of unanticipated target operons [J].
De Wulf, P ;
Kwon, O ;
Lin, ECC .
JOURNAL OF BACTERIOLOGY, 1999, 181 (21) :6772-6778
[7]  
DONG JM, 1993, GENE, V136, P227
[8]  
FORST S, 1987, J BIOL CHEM, V262, P16433
[9]   Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima [J].
Foster, JE ;
Sheng, Q ;
McClain, JR ;
Bures, M ;
Nicas, TI ;
Henry, K ;
Winkler, ME ;
Gilmour, R .
MICROBIOLOGY-SGM, 2004, 150 :885-896