Double immunofluorescence, peroxidase labelling and ultrastructural analysis of interneurones following prolonged electrophysiological recordings in vitro

被引:31
作者
Hughes, DI [1 ]
Bannister, AP [1 ]
Pawelzik, H [1 ]
Thomson, AM [1 ]
机构
[1] Royal Free Hosp, Sch Med, Dept Physiol, London NW3 2PF, England
关键词
slice preparation; interface chamber; sharp electrodes; immunofluoresce; peroxidase-labeling; ultrastructure;
D O I
10.1016/S0165-0270(00)00254-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Inhibitory hippocampal and neocortical interneurones comprise a physiologically, morphologically and neurochemically heterogenous cell population. To identify the roles each class of interneurone plays within a given circuit it is necessary to correlate the electrophysiological properties of individual cells with their neurochemistry and morphology at both the light and electron microscopic level. However, the optimal conditions required for any one part of the protocol typically compromise the results from another. We have developed a protocol which allows the neurochemical content, gross morphology and ultrastructure details of biocytin-filled neurones to be recovered following long, dual intracellular recordings in thick mature slices maintained in an interface recording chamber, helping define sub-populations which could not otherwise be determined. Dual immunofluorescence is performed by incubating the tissue in monoclonal and polyclonal antibodies simultaneously, prior to visualization of biocytin-labelling with precipitation of a peroxidase reaction product. By using a biotinylated anti-avidin D antibody (Vector Laboratories), the intensity of this precipitation can be enhanced further where necessary. It is envisaged that this protocol can not only help determine the neurochemical content of cells recorded in similar in vivo studies, but that the ability to amplify peroxidase labelling in poorly filled cells is also of interest. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 32 条
[1]   Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus [J].
Acsady, L ;
Arabadzisz, D ;
Freund, TF .
NEUROSCIENCE, 1996, 73 (02) :299-315
[2]   Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus [J].
Acsady, L ;
Gorcs, TJ ;
Freund, TF .
NEUROSCIENCE, 1996, 73 (02) :317-334
[3]  
ALCANTARA S, 1993, ANAT EMBRYOL, V188, P63
[4]   CALCIUM-BINDING PROTEIN DISTRIBUTION IN THE RAT-BRAIN [J].
BAIMBRIDGE, KG ;
MILLER, JJ ;
PARKES, CO .
BRAIN RESEARCH, 1982, 239 (02) :519-525
[5]   IMMUNOHISTOCHEMICAL LOCALIZATION OF CALCIUM-BINDING PROTEIN IN THE CEREBELLUM, HIPPOCAMPAL-FORMATION AND OLFACTORY-BULB OF THE RAT [J].
BAIMBRIDGE, KG ;
MILLER, JJ .
BRAIN RESEARCH, 1982, 245 (02) :223-229
[6]   CALBINDIN-D-28K AND PARVALBUMIN IN THE RAT NERVOUS-SYSTEM [J].
CELIO, MR .
NEUROSCIENCE, 1990, 35 (02) :375-475
[7]   INNERVATION OF BURST FIRING SPINY INTERNEURONS BY PYRAMIDAL CELLS IN DEEP LAYERS OF RAT SOMATOMOTOR CORTEX - PAIRED INTRACELLULAR-RECORDINGS WITH BIOCYTIN FILLING [J].
DEUCHARS, J ;
THOMSON, AM .
NEUROSCIENCE, 1995, 69 (03) :739-755
[8]   RELATIONSHIPS BETWEEN MORPHOLOGY AND PHYSIOLOGY OF PYRAMID-PYRAMID SINGLE AXON CONNECTIONS IN RAT NEOCORTEX IN-VITRO [J].
DEUCHARS, J ;
WEST, DC ;
THOMSON, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 478 (03) :423-435
[9]  
Freund TF, 1996, HIPPOCAMPUS, V6, P347, DOI 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO
[10]  
2-I