The scaling limit of lattice trees in high dimensions

被引:56
作者
Derbez, E [1 ]
Slade, G [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
D O I
10.1007/s002200050319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that above eight dimensions the scaling limit of sufficiently spread-out lattice trees is the variant of super-Brownian motion known as integrated super-Brownian excursion (ISE), as conjectured by Aldous. The same is true for nearest-neighbour lattice trees in sufficiently high dimensions. The proof uses the lace expansion.
引用
收藏
页码:69 / 104
页数:36
相关论文
共 34 条
[1]   On the number of incipient spanning clusters [J].
Aizenman, M .
NUCLEAR PHYSICS B, 1997, 485 (03) :551-582
[2]   TREE GRAPH INEQUALITIES AND CRITICAL-BEHAVIOR IN PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) :107-143
[3]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[4]   TREE-BASED MODELS FOR RANDOM DISTRIBUTION OF MASS [J].
ALDOUS, D .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (3-4) :625-641
[5]   THE CONTINUUM RANDOM TREE .1. [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1991, 19 (01) :1-28
[6]   SELF-AVOIDING WALK IN 5 OR MORE DIMENSIONS [J].
BRYDGES, D ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :125-148
[7]  
DAWSON D, 1997, AMS MATH SURVEYS MON
[8]   Lattice trees and super-Brownian motion [J].
Derbez, E ;
Slade, G .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01) :19-38
[9]  
DERBEZ E, 1996, THESIS MCMASTER U
[10]   SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS [J].
FLAJOLET, P ;
ODLYZKO, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :216-240