Shaping regularization in geophysical-estimation problems

被引:292
作者
Fomel, Sergey [1 ]
机构
[1] Univ Texas, John A & Katherine G Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78712 USA
关键词
Conjugate gradient methods; Interpolation; Iterative methods; Least squares approximations; Low-pass filters; Seismic waves;
D O I
10.1190/1.2433716
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Regularization is a required component of geophysical-estimation problems that operate with insufficient data. The goal of regularization is to impose additional constraints on the estimated model. I introduce shaping regularization, a general method for imposing constraints by explicit mapping of the estimated model to the space of admissible models. Shaping regularization is integrated in a conjugate-gradient algorithm for iterative least-squares estimation. It provides the advantage of better control on the estimated model in comparison with traditional regularization methods and, in some cases, leads to a faster iterative convergence. Simple data interpolation and seismic-velocity estimation examples illustrate the concept.
引用
收藏
页码:R29 / R36
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[2]  
BUBE KP, 1999, 69 ANN INT M SOC EXP, P1295
[3]  
Castagna, 2004, 74 ANN INT M SEG, P1786, DOI DOI 10.1190/1.1845172
[4]  
CLAERBOUT J, 1999, 61 ANN C EXH EAGE EX, P1009
[5]  
Claerbout J. F., 2006, BASIC EARTH IMAGING
[6]  
Claerbout JF, 1992, Earth Soundings Analysis: Processing Versus Inversion
[7]   Incorporating geologic information into reflection tomography [J].
Clapp, RG ;
Biondi, B ;
Claerbout, JF .
GEOPHYSICS, 2004, 69 (02) :533-546
[8]  
Dix C.H., 1955, GEOPHYSICS, V20, P68, DOI DOI 10.1190/1.1438126
[9]  
Engl H., 1996, REGULARIZATION INVER
[10]   Time-migration velocity analysis by velocity continuation [J].
Fomel, S .
GEOPHYSICS, 2003, 68 (05) :1662-1672