Revealing strengths and weaknesses of methods for gene network inference

被引:504
作者
Marbach, Daniel [2 ,3 ]
Prill, Robert J. [1 ]
Schaffter, Thomas [2 ]
Mattiussi, Claudio [2 ]
Floreano, Dario [2 ]
Stolovitzky, Gustavo [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Ecole Polytech Fed Lausanne, Lab Intelligent Syst, CH-1015 Lausanne, Switzerland
[3] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
基金
瑞士国家科学基金会;
关键词
DREAM challenge; community experiment; reverse engineering; transcriptional regulatory networks; performance assessment; REGULATORY NETWORKS; TRANSCRIPTIONAL REGULATION; RECONSTRUCTION; ALGORITHM; MOTIFS;
D O I
10.1073/pnas.0913357107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Numerous methods have been developed for inferring gene regulatory networks from expression data, however, both their absolute and comparative performance remain poorly understood. In this paper, we introduce a framework for critical performance assessment of methods for gene network inference. We present an in silico benchmark suite that we provided as a blinded, community-wide challenge within the context of the DREAM (Dialogue on Reverse Engineering Assessment and Methods) project. Weassess the performance of 29 gene-network-inference methods, which have been applied independently by participating teams. Performance profiling reveals that current inference methods are affected, to various degrees, by different types of systematic prediction errors. In particular, all but the best-performing method failed to accurately infer multiple regulatory inputs (combinatorial regulation) of genes. The results of this community-wide experiment show that reliable network inference from gene expression data remains an unsolved problem, and they indicate potential ways of network reconstruction improvements.
引用
收藏
页码:6286 / 6291
页数:6
相关论文
共 27 条
[1]   QUANTITATIVE MODEL FOR GENE-REGULATION BY LAMBDA-PHAGE REPRESSOR [J].
ACKERS, GK ;
JOHNSON, AD ;
SHEA, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (04) :1129-1133
[2]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[5]   The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo [J].
Bonneau, Richard ;
Reiss, David J. ;
Shannon, Paul ;
Facciotti, Marc ;
Hood, Leroy ;
Baliga, Nitin S. ;
Thorsson, Vesteinn .
GENOME BIOLOGY, 2006, 7 (05)
[6]   A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches [J].
Cantone, Irene ;
Marucci, Lucia ;
Iorio, Francesco ;
Ricci, Maria Aurelia ;
Belcastro, Vincenzo ;
Bansal, Mukesh ;
Santini, Stefania ;
di Bernardo, Mario ;
di Bernardo, Diego ;
Cosma, Maria Pia .
CELL, 2009, 137 (01) :172-181
[7]   Unravelling gene networks from noisy under-determined experimental perturbation data [J].
de la Fuente, A. ;
Makhecha, D. P. .
IEE PROCEEDINGS SYSTEMS BIOLOGY, 2006, 153 (04) :257-262
[8]   Discovery of meaningful associations in genomic data using partial correlation coefficients [J].
de la Fuente, A ;
Bing, N ;
Hoeschele, I ;
Mendes, P .
BIOINFORMATICS, 2004, 20 (18) :3565-3574
[9]   Linking the genes: inferring quantitative gene networks from microarray data [J].
de la Fuente, A ;
Brazhnik, P ;
Mendes, P .
TRENDS IN GENETICS, 2002, 18 (08) :395-398
[10]   Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks [J].
di Bernardo, D ;
Thompson, MJ ;
Gardner, TS ;
Chobot, SE ;
Eastwood, EL ;
Wojtovich, AP ;
Elliott, SJ ;
Schaus, SE ;
Collins, JJ .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :377-383