Bipartite entanglement measure based on covariance

被引:13
作者
Abascal, Isabel Sainz [1 ]
Bjork, Gunnar [1 ]
机构
[1] Royal Inst Technol, Sch Informat & Commun Technol, SE-16440 Kista, Sweden
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevA.75.062317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an entanglement measure for two quNits based on the covariances of a set of generators of the su(N) algebra. In particular, we represent this measure in terms of the mutually unbiased projectors for N prime. For pure states this measure quantifies entanglement, we obtain an explicit expression which relates it to the concurrence hierarchy, specifically the I-concurrence and the three-concurrence. For mixed states we propose a separability criterion.
引用
收藏
页数:6
相关论文
共 48 条
[1]   A note on invariants and entanglements [J].
Albeverio, S ;
Fei, SM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (04) :223-227
[2]   Tensor of coherences parametrization of multiqubit density operators for entanglement characterization [J].
Altafini, C .
PHYSICAL REVIEW A, 2004, 69 (01) :13
[3]  
[Anonymous], 2001, QUANTUM INFORM INTRO
[4]   Concurrence in arbitrary dimensions [J].
Badziag, P ;
Deuar, P ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
JOURNAL OF MODERN OPTICS, 2002, 49 (08) :1289-1297
[5]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[8]   Concurrence of arbitrary dimensional bipartite quantum states [J].
Chen, K ;
Albeverio, S ;
Fei, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[9]  
Chen K, 2003, QUANTUM INF COMPUT, V3, P193
[10]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725