Movement of the helical domain of the ε subunit is required for the activation of thermophilic F1-ATPase

被引:42
作者
Kato-Yamada, Y [1 ]
Yoshida, M [1 ]
Hisabori, T [1 ]
机构
[1] Tokyo Inst Technol, Chem Resources Lab, Yokohama, Kanagawa 2268503, Japan
关键词
D O I
10.1074/jbc.M006575200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inhibitory effect of epsilon subunit in F-1-ATPase from thermophilic Bacillus PS3 was examined focusing on the structure-function relationship. For this purpose, we designed: a mutant for epsilon subunit similar to the one constructed by Schulenberg and Capaldi (Schulenberg, B,, and Capaldi, R, A. (1999) J, Biol, Chem. 274, 28351-28355), We introduced two cysteine residues at the interface of N-terminal beta -sandwich domain (S48C) and C-terminal cu-helical domain (N125C) of epsilon subunit, The alpha (3)beta (3)gamma epsilon complex containing the reduced form of this mutant epsilon subunit showed suppressed ATPase activity and gradual activation during the measurement. This activation pattern was similar to the complex with the wild type epsilon subunit, The conformation of the mutant epsilon subunit must be fixed and similar to the reported three-dimensional structure of the isolated epsilon subunit, when the intramolecular disulfide bridge was formed on this subunit by oxidation. This oxidized mutant epsilon subunit could form the alpha (3)beta (3)gamma epsilon complex but did not show any inhibitory effect. The complex was converted to the activated state, and the cross-link in the mutant epsilon subunit in the complex was efficiently formed in the presence of ATP-Mg, whereas no cross-link was observed without ATP-Mg, suggesting the conformation of the oxidized mutant epsilon subunit must be similar to that in the activated state complex. A non-hydrolyzable analog of ATP, 5'-adenylyl-beta,gamma -imidodiphosphate, could stimulate the formation of the cross-link on the epsilon subunit, Furthermore, the cross-link formation was stimulated by nucleotides even when this mutant epsilon subunit was assembled with a mutant alpha (3)beta (3)gamma complex lacking non-catalytic sites. These results indicate that binding of ATP to the catalytic sites induces a conformational change in the epsilon subunit and triggers transition of the complex from the suppressed state to the activated state.
引用
收藏
页码:35746 / 35750
页数:5
相关论文
共 46 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex - The gamma-epsilon subunits are essentially randomly distributed relative to the alpha(3)beta(3)delta domain in the intact complex [J].
Aggeler, R ;
Ogilvie, I ;
Capaldi, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (31) :19621-19624
[3]   Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1F0-type ATPase [J].
Aggeler, R ;
Capaldi, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13888-13891
[4]   The ATP synthase - A splendid molecular machine [J].
Boyer, PD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :717-749
[5]   THE BINDING CHANGE MECHANISM FOR ATP SYNTHASE - SOME PROBABILITIES AND POSSIBILITIES [J].
BOYER, PD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1140 (03) :215-250
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Rotation of the ε subunit during catalysis by Escherichia coli F0F1-ATP synthase [J].
Bulygin, VV ;
Duncan, TM ;
Cross, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31765-31769
[8]   The ε subunit of bacterial and chloroplast F1F0 ATPases -: Structure, arrangement, and role of the ε subunit in energy coupling within the complex [J].
Capaldi, RA ;
Schulenberg, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1458 (2-3) :263-269
[9]  
DALLMANN HG, 1992, J BIOL CHEM, V267, P18953
[10]   ROTATION OF SUBUNITS DURING CATALYSIS BY ESCHERICHIA-COLI F1-ATPASE [J].
DUNCAN, TM ;
BULYGIN, VV ;
ZHOU, Y ;
HUTCHEON, ML ;
CROSS, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :10964-10968