Morphotype community structure of ectomycorrhizas on Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings grown under elevated atmospheric CO2 and temperature

被引:57
作者
Rygiewicz, PT
Martin, KJ
Tuininga, AR
机构
[1] US EPA, Natl Hlth & Environm Effects Res Lab, Corvallis, OR 97333 USA
[2] Dynamac Corp, Natl Hlth & Environm Effects Res Lab, Corvallis, OR 97333 USA
[3] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
关键词
community structure; diversity; elevated atmospheric CO2; elevated atmospheric temperature; morphotypes;
D O I
10.1007/s004420000385
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Mycorrhizas alter the acquisition of carbon and nutrients, thereby affecting numerous plant and ecosystem processes. It is important, therefore, to determine how mycorrhizal populations will change under possible future climate conditions. Individual and interactive effects of elevated atmospheric CO2 concentration and atmospheric temperature were assessed in a 2 x 2 factorial design [ambient and elevated (200 ppm above ambient) CO2 concentrations, and ambient and elevated (4 degrees C above ambient) temperatures]. In June 1993, 2-year-old Douglas fir (Pseudotsuga menziesii Mirb. France) seedlings were planted in 12 environment-tracking chambers (n = 3) containing reconstructed, low-nitrogen, native for est soil. Climate treatments were imposed shortly thereafter, and the seedlings grew until June 1997. Soil cores were taken twice per year during the exposure period. We present findings on changes in the community structure of ectomycorrhizal (ECM) root tips, categorized into morphotypes using gross morphological traits. A diverse and stable community of morphotypes (a total of 40) was encountered; no more than 30 of which were seen at any sampling time. In the first sample, there were only 15 morphotypes found in the 12 chambers. Morphotype numbers increased during the first half of the experiment, remaining fairly constant thereafter. Near the end of the exposure, elevated-temperature treatments maintained more morphotypes than ambient treatments. However, overall, absolute measures (number of ECM tips) were affected primarily by CO2 treatment, whereas proportional measures (e.g., Simpson's index) were affected primarily by temperature. While some morphotypes were negatively affected seasonally by higher temperatures (putative Rhizopogon group), others (Cenococcum) seemed to thrive. Underlying the dominant patterns of change in diversity, driven by the Rhizopogon group, subdominant populations responded slightly differently. Community diversity through time tended to increase at a greater rate for all subdominant populations compared with the rate when dominant populations were included.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 56 条
[1]  
Agerer R., 1987, Colour atlas of ectomycorrhizae
[2]   EFFECTS OF N FERTILIZATION ON POPULATIONS OF FINE ROOTS AND MYCORRHIZAS IN SPRUCE HUMUS [J].
ALEXANDER, IJ ;
FAIRLEY, RI .
PLANT AND SOIL, 1983, 71 (1-3) :49-53
[3]   STRESS INTERACTIONS AND MYCORRHIZAL PLANT-RESPONSE - UNDERSTANDING CARBON ALLOCATION PRIORITIES [J].
ANDERSEN, CP ;
RYGIEWICZ, PT .
ENVIRONMENTAL POLLUTION, 1991, 73 (3-4) :217-244
[4]  
[Anonymous], 1996, A Manual of Concise Descriptions of North American Ectomycorrhizae
[5]   EFFECTS OF DIFFERENT FERTILIZER TREATMENTS ON ECTOMYCORRHIZAL COLONIZATION POTENTIAL IN 2 SCOTS PINE FORESTS IN SWEDEN [J].
ARNEBRANT, K ;
SODERSTROM, B .
FOREST ECOLOGY AND MANAGEMENT, 1992, 53 (1-4) :77-89
[6]  
Bradbury SM, 1998, CAN J BOT, V76, P218, DOI 10.1139/cjb-76-2-218
[7]  
Brutsaert W., 1982, Evaporation into the atmosphere: Theory, history, and applications, DOI [10.1007/978-94-017-1497-6, DOI 10.1007/978-94-017-1497-6]
[8]   TANSLEY REVIEW NO-71 - EFFECTS OF ELEVATED ATMOSPHERIC CO2 ON WOODY-PLANTS [J].
CEULEMANS, R ;
MOUSSEAU, M .
NEW PHYTOLOGIST, 1994, 127 (03) :425-446
[9]   BELOWGROUND RESPONSES TO RISING ATMOSPHERIC CO2 - IMPLICATIONS FOR PLANTS, SOIL BIOTA AND ECOSYSTEM PROCESSES - EXECUTIVE SUMMARY [J].
CURTIS, PS ;
ONEILL, EG ;
TEERI, JA ;
ZAK, DR ;
PREGITZER, KS .
PLANT AND SOIL, 1994, 165 (01) :1-6
[10]  
Davis M. B., 1981, FOREST SUCCESSION CO, P132, DOI DOI 10.1007/978-1-4612-5950-3_10