Drug discovery with engineered zinc-finger proteins

被引:204
作者
Jamieson, AC [1 ]
Miller, JC [1 ]
Pabo, CO [1 ]
机构
[1] Sangamo Biosci Inc, Point Richmond Tech Ctr, Richmond, CA USA
关键词
D O I
10.1038/nrd1087
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Zinc-finger proteins (ZFPs) that recognize novel DNA sequences are the basis of a powerful technology platform with many uses in drug discovery and therapeutics. These proteins have been used as the DNA-binding domains of novel transcription factors (ZFP TFs), which are useful for validating genes as drug targets and for engineering cell lines for small-molecule screening and protein production. Recently, they have also been used as a basis for novel human therapeutics. Most of our advances in the design and application of these ZFP TFs rely on our ability to engineer ZFPs that bind short stretches of DNA (typically 9-18 base pairs) located within the promoters of target genes. Here, we summarize the methods used to design these DNA-binding domains, explain how they are incorporated into novel transcription factors (and other useful molecules) and describe some key applications in drug discovery.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 72 条
[1]   Nuclear hormone receptors and gene expression [J].
Aranda, A ;
Pascual, A .
PHYSIOLOGICAL REVIEWS, 2001, 81 (03) :1269-1304
[2]  
Bartsevich VV, 2000, MOL PHARMACOL, V58, P1
[3]   Chemically regulated zinc finger transcription factors [J].
Beerli, RR ;
Schopfer, U ;
Dreier, B ;
Barbas, CF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32617-32627
[4]   Engineering polydactyl zinc-finger transcription factors [J].
Beerli, RR ;
Barbas, CF .
NATURE BIOTECHNOLOGY, 2002, 20 (02) :135-141
[6]   Stimulation of homologous recombination through targeted cleavage by chimeric nucleases [J].
Bibikova, M ;
Carroll, D ;
Segal, DJ ;
Trautman, JK ;
Smith, J ;
Kim, YG ;
Chandrasegaran, S .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (01) :289-297
[7]  
Bibikova M, 2002, GENETICS, V161, P1169
[8]   Scanning the human genome with combinatorial transcription factor libraries [J].
Blancafort, P ;
Magnenat, L ;
Barbas, CF .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :269-274
[9]   Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites [J].
Bushman, FD ;
Miller, MD .
JOURNAL OF VIROLOGY, 1997, 71 (01) :458-464
[10]   Chimeric restriction enzymes: What is next? [J].
Chandrasegaran, S ;
Smith, J .
BIOLOGICAL CHEMISTRY, 1999, 380 (7-8) :841-848