Noise-induced hearing loss (NIHL) and hair cell loss are known to show only a moderate correlation. One reason for this is that NIHL may reflect not only the sum of dead hair cells, but also the sum of impaired but:;till living hair cells. This report compares hair cell loss in different cochlear regions in rats with noise-induced compound action potential (CAP) threshold elevation at corresponding frequencies. CAP threshold elevation and hair cell loss were determined 4 weeks after noise exposure. In the apical turn (< 35% from the apex) there was no hair cell loss even when a 60 dB CAP threshold elevation was induced. In the region of 40-60% from the apex in the middle turn, significant hair cell loss was not observed until CAP threshold elevation exceeded about 40-50 dB. This critical level decreased towards the basal turn. In the basal turn, outer hair cell (OHC) loss was observed in almost all of the noise-exposed rats, even in some cases without detectable NIHL, but inner hair cell (IHC) loss was still not observed until 50 dB threshold elevation. In the region of 75-90% from the apex related to the highest frequencies tested in this study (30-40 kHz), a linear NlHL/OHC loss relationship was observed. The results of this paper suggest that the high frequency hair cells in rat cochlea may die relatively rapidly after injury, leading to a linear relation between NIHL and hair cell loss, but that the low frequency hair cells may survive without auditory function. (C) 2003 Elsevier Science B.V. All rights reserved.