A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints

被引:151
作者
Fukushima, M [1 ]
Luo, ZQ
Pang, JS
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Appl Math & Phys, Kyoto 60601, Japan
[2] McMaster Univ, Dept Elect & Comp Engn, Commun Res Lab, Hamilton, ON L8S 4K1, Canada
[3] Johns Hopkins Univ, Whiting Sch Engn, Dept Math Sci, Baltimore, MD 21218 USA
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会; 美国国家科学基金会;
关键词
mathematical programs with equilibrium constraints; sequential quadratic programming; linear complementarity;
D O I
10.1023/A:1018359900133
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a sequential quadratic programming algorithm for computing a stationary point of a mathematical program with linear complementarity constraints. The algorithm is based on a reformulation of the complementarity condition as a system of semismooth equations by means of Fischer-Burmeister functional, combined with a classical penalty function method for solving constrained optimization problems. Global convergence of the algorithm is established under appropriate assumptions. Some preliminary computational results are reported.
引用
收藏
页码:5 / 34
页数:30
相关论文
共 28 条