Prion recognition elements govern nucleation, strain specificity and species barriers

被引:115
作者
Tessier, Peter M. [1 ]
Lindquist, Susan [1 ]
机构
[1] Whitehead Inst Biomed Res, Howard Hughes Med Inst, Cambridge, MA 02142 USA
关键词
D O I
10.1038/nature05848
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prions are proteins that can switch to self-perpetuating, infectious conformations. The abilities of prions to replicate, form structurally distinct strains, and establish and overcome transmission barriers between species are poorly understood. We exploit surface-bound peptides to overcome complexities of investigating such problems in solution. For the yeast prion Sup35, we find that the switch to the prion state is controlled with exquisite specificity by small elements of primary sequence. Strikingly, these same sequence elements govern the formation of distinct self-perpetuating conformations ( prion strains) and determine species-specific seeding activities. A Sup35 chimaera that traverses the transmission barrier between two yeast species possesses the critical sequence elements from both. Using this chimaera, we show that the influence of environment and mutations on the formation of species-specific strains is driven by selective recognition of either sequence element. Thus, critical aspects of prion conversion are enciphered by subtle differences between small, highly specific recognition elements.
引用
收藏
页码:556 / +
页数:7
相关论文
共 51 条
[1]   TRANSMISSION OF BOVINE SPONGIFORM ENCEPHALOPATHY AND SCRAPIE TO MICE - STRAIN VARIATION AND THE SPECIES BARRIER [J].
BRUCE, M ;
CHREE, A ;
MCCONNELL, I ;
FOSTER, J ;
PEARSON, G ;
FRASER, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1994, 343 (1306) :405-411
[2]   THE DISEASE CHARACTERISTICS OF DIFFERENT STRAINS OF SCRAPIE IN SINC CONGENIC MOUSE LINES - IMPLICATIONS FOR THE NATURE OF THE AGENT AND HOST CONTROL OF PATHOGENESIS [J].
BRUCE, ME ;
MCCONNELL, I ;
FRASER, H ;
DICKINSON, AG .
JOURNAL OF GENERAL VIROLOGY, 1991, 72 :595-603
[3]   Strain-dependent differences in β-sheet conformations of abnormal prion protein [J].
Caughey, B ;
Raymond, GJ ;
Bessen, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32230-32235
[4]   Role of Escherichia coli curli operons in directing amyloid fiber formation [J].
Chapman, MR ;
Robinson, LS ;
Pinkner, JS ;
Roth, R ;
Heuser, J ;
Hammar, M ;
Normark, S ;
Hultgren, SJ .
SCIENCE, 2002, 295 (5556) :851-855
[5]   Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein [J].
Chernoff, YO ;
Galkin, AP ;
Lewitin, E ;
Chernova, TA ;
Newnam, GP ;
Belenkiy, SM .
MOLECULAR MICROBIOLOGY, 2000, 35 (04) :865-876
[6]   Emerging principles of conformation based prion inheritance [J].
Chien, P ;
Weissman, JS ;
DePace, AH .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :617-656
[7]   Generation of prion transmission barriers by mutational control of amyloid conformations [J].
Chien, P ;
DePace, AH ;
Collins, SR ;
Weissman, JS .
NATURE, 2003, 424 (6951) :948-951
[8]   Conformational diversity in a yeast prion dictates its seeding specificity [J].
Chien, P ;
Weissman, JS .
NATURE, 2001, 410 (6825) :223-227
[9]   Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD [J].
Collinge, J ;
Sidle, KCL ;
Meads, J ;
Ironside, J ;
Hill, AF .
NATURE, 1996, 383 (6602) :685-690
[10]   UNALTERED SUSCEPTIBILITY TO BSE IN TRANSGENIC MICE EXPRESSING HUMAN PRION PROTEIN [J].
COLLINGE, J ;
PALMER, MS ;
SIDLE, KCL ;
HILL, AF ;
GOWLAND, I ;
MEADS, J ;
ASANTE, E ;
BRADLEY, R ;
DOEY, LJ ;
LANTOS, PL .
NATURE, 1995, 378 (6559) :779-783