The kinetics of addition and fragmentation in reversible addition fragmentation chain transfer polymerization: An ab initio study

被引:81
作者
Coote, ML [1 ]
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia
关键词
D O I
10.1021/jp046131u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-level ab initio calculations of the forward and reverse rate coefficients have been pet-formed for a series of prototypical reversible addition fragmentation chain transfer (RAFT) reactions: R. + S=C(Z)SCH3 --> R-SC.(Z)SCH3, for R = CH3, with Z = CH3, Ph, and CH2Ph; and Z = CH3, with R = (CH3), CH2COOCH3, CH2Ph, and C(CH3)(2)CN. The addition reactions are fast (ca. 10(6)- 10(8) L mol(-1) s(-1)), typically around three orders of magnitude faster than addition to the C=C bonds of alkenes. The fragmentation rate coefficients are much more sensitive to the nature of the substituents and vary from 10(-4) to 10(7) s(-1). In both directions, the qualitative effects of substituents on the rate coefficients largely follow those on the equilibrium constants of the reactions, with fragmentation being favored by bulky and radical-stabilizing R-groups and addition being favored by bulky and radical-stabilizing Z-groups. However, there is evidence for additional polar and hydrogen-bonding interactions in the transition structures of some of the reactions. Ab initio calculations were performed at the G3(MP2)-RAD//B3-LYP/6-31G(d) level of theory, and rates were obtained via variational transition state theory in conjunction with a hindered-rotor treatment of the low-frequency torsional modes. Various simplifications to this methodology were investigated with a view to identifying reliable procedures for the study of larger polymer-related systems. It appears that reasonable results may be achievable using standard transition state theory, in conjunction with ab initio calculations at the RMP2/6-311 +G(3df,2p) level. provided the results for delocalized systems are corrected to the G3(MP2)-RAD level using an ONIOM-based procedure. The harmonic oscillator (HO) model may be suitable for qualitative "order-of-magnitude" studies of the kinetics of the individual reactions, but the hindered-rotor (HR) model is advisable for quantitative studies.
引用
收藏
页码:1230 / 1239
页数:10
相关论文
共 75 条
[1]   Influence of the chemical structure of MADIX agents on the RAFT polymerization of styrene [J].
Adamy, M ;
van Herk, AM ;
Destarac, M ;
Monteiro, MJ .
MACROMOLECULES, 2003, 36 (07) :2293-2301
[2]  
[Anonymous], 1989, Chemical Kinetics and Dynamics
[3]   Improved method for calculating projected frequencies along a reaction path [J].
Baboul, AG ;
Schlegel, HB .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (22) :9413-9417
[4]   Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium [J].
Barner-Kowollik, C ;
Quinn, JF ;
Morsley, DR ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (09) :1353-1365
[5]   Nano- and micro-engineering of ordered porous blue-light-emitting films by templating well-defined organic polymers around condensing water droplets [J].
Barner-Kowollik, C ;
Dalton, H ;
Davis, TP ;
Stenzel, MH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (31) :3664-3668
[6]   The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: Comment on "the magnitude of the fragmentation rate coefficient" [J].
Barner-Kowollik, C ;
Coote, ML ;
Davis, TP ;
Radom, L ;
Vana, P .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (18) :2828-2832
[7]   Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate [J].
Barner-Kowollik, C ;
Quinn, JF ;
Nguyen, TLU ;
Heuts, JPA ;
Davis, TP .
MACROMOLECULES, 2001, 34 (22) :7849-7857
[8]  
Bell R. P., 1980, TUNNEL EFFECT CHEM
[9]   RAFT synthesis of linear and star-shaped light harvesting polymers using di- and hexafunctional ruthenium polypyridine reagents [J].
Chen, M ;
Ghiggino, KP ;
Launikonis, A ;
Mau, AWH ;
Rizzardo, E ;
Sasse, WHF ;
Thang, SH ;
Wilson, GJ .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (11) :2696-2700
[10]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562