Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system

被引:75
作者
Doyle, Shannon M. [1 ]
Hoskins, Joel R. [1 ]
Wickner, Sue [1 ]
机构
[1] NIH, Natl Canc Ctr, Mol Biol Lab, Bethesda, MD 20892 USA
关键词
ClpA; ClpX; disaggregation; Hsp104; Hsp70;
D O I
10.1073/pnas.0703980104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ClpB and Hsp104, members of the AAA+ superfamily of proteins, protect cells from the devastating effects of protein inactivation and aggregation that arise after extreme heat stress. They exist as a hexameric ring and contain two nucleotide-binding sites per monomer. ClpB and Hsp104 are able to dissolve protein aggregates in conjunction with the DnaK/Hsp70 chaperone system, although the roles of the individual chaperones in disaggregation are not well understood. in the absence of the DnaK/Hsp70 system, ClpB and Hsp104 alone are able to perform protein remodeling when their ATPase activity is asymmetrically slowed either by providing a mixture of ATP and ATP gamma S, a nonphysiological and slowly hydrolyzed ATP analog, or by inactivating one of the two nucleotide-binding domains by mutation. To gain insight into the roles of ClpB and the DnaKsystem in protein remodeling, we tested whether there was a further stimulation by the DnaK chaperone system under conditions that elicited remodeling activity by ClpB alone. Our results demonstrate that ClpB and the DnaK system act synergistically to remodel proteins and dissolve aggregates. The results further show that ATP is required and that both nucleotide-binding sites of ClpB must be able to hydrolyze ATP to permit functional collaboration between ClpB and the DnaK system.
引用
收藏
页码:11138 / 11144
页数:7
相关论文
共 47 条
[1]   Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB [J].
Akoev, V ;
Gogol, EP ;
Barnett, ME ;
Zolkiewski, M .
PROTEIN SCIENCE, 2004, 13 (03) :567-574
[2]   The amino-terminal domain of ClpB supports binding to strongly aggregated proteins [J].
Barnett, ME ;
Nagy, M ;
Kedzierska, S ;
Zolkiewski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (41) :34940-34945
[3]   Site-directed mutagenesis of conserved charged amino acid residues in C1pβ from Escherichia coli [J].
Barnett, ME ;
Zolkiewski, M .
BIOCHEMISTRY, 2002, 41 (37) :11277-11283
[4]   Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein [J].
Cashikar, AG ;
Schirmer, EC ;
Hattendorf, DA ;
Glover, R ;
Ramakrishnan, MS ;
Ware, DM ;
Lindquist, SL .
MOLECULAR CELL, 2002, 9 (04) :751-760
[5]   Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery [J].
Diamant, S ;
Ben-Zvi, AP ;
Bukau, B ;
Goloubinoff, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) :21107-21113
[6]   ClpS, a substrate modulator of the ClpAP machine [J].
Dougan, DA ;
Reid, BG ;
Horwich, AL ;
Bukau, B .
MOLECULAR CELL, 2002, 9 (03) :673-683
[7]   Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity [J].
Doyle, Shannon M. ;
Shorter, James ;
Zolkiewski, Michal ;
Hoskins, Joel R. ;
Lindquist, Susan ;
Wickner, Sue .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (02) :114-122
[8]   Evolutionary relationships and structural mechanisms of AAA plus proteins [J].
Erzberger, Jan P. ;
Berger, James M. .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2006, 35 :93-114
[9]   Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins [J].
Glover, JR ;
Lindquist, S .
CELL, 1998, 94 (01) :73-82
[10]   Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network [J].
Goloubinoff, P ;
Mogk, A ;
Ben Zvi, AP ;
Tomoyasu, T ;
Bukau, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13732-13737