Limitations on the smooth confinement of an unstretchable manifold

被引:23
作者
Venkataramani, SC [1 ]
Witten, TA
Kramer, EM
Geroch, RP
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Chicago, MRSEC, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[5] Simons Rock Coll, Dept Phys, Great Barrington, MA 01230 USA
[6] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.533394
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that an m-dimensional unit ball D-m in the Euclidean space R-m cannot be isometrically embedded into a higher-dimensional Euclidean ball B(r)(d)subset of R-d of radius r < 1/2 unless one of two conditions is met: (1) the embedding manifold has dimension d greater than or equal to 2m; (2) the embedding is not smooth. The proof uses differential geometry to show that if d < 2m and the embedding is smooth and isometric, we can construct a line from the center of D-m to the boundary that is geodesic in both D-m and in the embedding manifold R-d. Since such a line has length 1, the diameter of the embedding ball must exceed 1. (C) 2000 American Institute of Physics. [S0022-2488(00)00707-6].
引用
收藏
页码:5107 / 5128
页数:22
相关论文
共 30 条
[1]  
[Anonymous], 1970, USPEHI MAT NAUK
[2]   ICOSAHEDRAL CRYSTALS - WHERE ARE THE ATOMS [J].
BAK, P .
PHYSICAL REVIEW LETTERS, 1986, 56 (08) :861-864
[3]  
CARTAN E, 1920, B SOC MATH FRANCE, V48, P132
[4]   Conical surfaces and crescent singularities in crumpled sheets [J].
Cerda, E ;
Mahadevan, L .
PHYSICAL REVIEW LETTERS, 1998, 80 (11) :2358-2361
[5]   Experimental study of developable cones [J].
Chaieb, S ;
Melo, F ;
Geminard, JC .
PHYSICAL REVIEW LETTERS, 1998, 80 (11) :2354-2357
[6]  
Dajczer M., 1990, Submanifolds and Isometric Immersions
[7]  
EISENHART LP, 1909, DIFFERENTIAL GEOMETR
[8]  
FERUS D, 1971, MICH MATH J, V18, P61
[9]  
Gromov M, 1986, PARTIAL DIFFERENTIAL
[10]  
Guillemin V., 2010, DIFFERENTIAL TOPOLOG, V370