Ion temperature gradient control using reinforcement learning technique

被引:6
作者
Wakatsuki, T. [1 ]
Suzuki, T. [1 ]
Oyama, N. [1 ]
Hayashi, N. [1 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan
关键词
control; reinforcement learning; JT-60U;
D O I
10.1088/1741-4326/abe68d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma with an internal transport barrier (ITB) is desirable for a steady-state tokamak reactor because of its high confinement quality and high bootstrap current fraction. However, the local pressure gradient tends to be steep and the plasma often becomes unstable. In this study, an ion temperature gradient control system based on neutral beam injection (NBI) is developed using the reinforcement learning technique. The response characteristics of an ion temperature gradient to NBI are non-linear and sensitive to experimental conditions, which makes it difficult to develop a robust control system. Our control system is trained for plasmas with a wide range of ITB strengths. Using the reinforcement learning technique, the system acquires a robust control feature through several thousand iterations of trial and error in an integrated transport simulation hosted by TOPICS. The control system is composed of neural networks (NNs) whose input variables are the ion temperature gradient, the current NBI power, and the NBI powers for several previous control time steps. The trained system can determine a control output which is suitable for the response characteristics inferred from the input variables. The trained control system is tested in the TOPICS simulation using plasma models based on two experimental plasmas of JT-60U with different ITB strengths. It is shown that the ion temperature gradient can be appropriately controlled for both plasmas, which supports the expectation that this system is applicable to real experiments.
引用
收藏
页数:10
相关论文
共 17 条
  • [1] [Anonymous], 2016, ARXIV161101224
  • [2] The CRONOS suite of codes for integrated tokamak modelling
    Artaud, J. F.
    Basiuk, V.
    Imbeaux, F.
    Schneider, M.
    Garcia, J.
    Giruzzi, G.
    Huynh, P.
    Aniel, T.
    Albajar, F.
    Ane, J. M.
    Becoulet, A.
    Bourdelle, C.
    Casati, A.
    Colas, L.
    Decker, J.
    Dumont, R.
    Eriksson, L. G.
    Garbet, X.
    Guirlet, R.
    Hertout, P.
    Hoang, G. T.
    Houlberg, W.
    Huysmans, G.
    Joffrin, E.
    Kim, S. H.
    Koechl, F.
    Lister, J.
    Litaudon, X.
    Maget, P.
    Masset, R.
    Pegourie, B.
    Peysson, Y.
    Thomas, P.
    Tsitroneand, E.
    Turco, F.
    [J]. NUCLEAR FUSION, 2010, 50 (04)
  • [3] The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results
    Falchetto, G. L.
    Coster, D.
    Coelho, R.
    Scott, B. D.
    Figini, L.
    Kalupin, D.
    Nardon, E.
    Nowak, S.
    Alves, L. L.
    Artaud, J. F.
    Basiuk, V.
    Bizarro, Jao P. S.
    Boulbe, C.
    Dinklage, A.
    Farina, D.
    Faugeras, B.
    Ferreira, J.
    Figueiredo, A.
    Huynh, Ph
    Imbeaux, F.
    Ivanova-Stanik, I.
    Jonsson, T.
    Klingshirn, H-J
    Konz, C.
    Kus, A.
    Marushchenko, N. B.
    Pereverzev, G.
    Owsiak, M.
    Poli, E.
    Peysson, Y.
    Reimer, R.
    Signoret, J.
    Sauter, O.
    Stankiewicz, R.
    Strand, P.
    Voitsekhovitch, I.
    Westerhof, E.
    Zok, T.
    Zwingmann, W.
    [J]. NUCLEAR FUSION, 2014, 54 (04)
  • [4] Real-time physics-model-based simulation of the current density profile in tokamak plasmas
    Felici, F.
    Sauter, O.
    Coda, S.
    Duval, B. P.
    Goodman, T. P.
    Moret, J-M.
    Paley, J. I.
    [J]. NUCLEAR FUSION, 2011, 51 (08)
  • [5] Advanced tokamak research with integrated modeling in JT-60 Upgrade
    Hayashi, N.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (05)
  • [6] Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller
    Maljaars, E.
    Felici, F.
    Blanken, T. C.
    Galperti, C.
    Sauter, O.
    de Baar, M. R.
    Carpanese, F.
    Goodman, T. P.
    Kim, D.
    Kim, S. H.
    Kong, M.
    Mavkov, B.
    Merle, A.
    Moret, J. M.
    Nouailletas, R.
    Scheffer, M.
    Teplukhina, A. A.
    Vu, N. M. T.
    [J]. NUCLEAR FUSION, 2017, 57 (12)
  • [7] Integrated modeling applications for tokamak experiments with OMFIT
    Meneghini, O.
    Smith, S. P.
    Lao, L. L.
    Izacard, O.
    Ren, Q.
    Park, J. M.
    Candy, J.
    Wang, Z.
    Luna, C. J.
    Izzo, V. A.
    Grierson, B. A.
    Snyder, P. B.
    Holland, C.
    Penna, J.
    Lu, G.
    Raum, P.
    McCubbin, A.
    Orlov, D. M.
    Belli, E. A.
    Ferraro, N. M.
    Prater, R.
    Osborne, T. H.
    Turnbull, A. D.
    Staebler, G. M.
    [J]. NUCLEAR FUSION, 2015, 55 (08)
  • [8] Michele R., 2014, Plasma Fusion Res, V9, DOI DOI 10.1585/PFR.9.3403023
  • [9] Towards model-based current profile control at DIII-D
    Ou, Y.
    Luce, T. C.
    Schuster, E.
    Ferron, J. R.
    Walker, M. L.
    Xu, C.
    Humphreys, D. A.
    [J]. FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) : 1153 - 1160
  • [10] Validation of plasma current profile model predictive control in tokamaks via simulations
    Ouarit, H.
    Bremond, S.
    Nouailletas, R.
    Witrant, E.
    Autrique, L.
    [J]. FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) : 1018 - 1021