Fractional differential equations and the Schrodinger equation

被引:46
作者
Ben Adda, F
Cresson, J
机构
[1] Univ Franche Comte, CNRS, UMR 6623, Equipe Math Besancon, F-2503 Besancon, France
[2] King Fahd Univ Petr & Minerals, Hail Community Coll, Dept Math Sci, Hail, Saudi Arabia
[3] ISMANS, F-72000 Le Mans, France
关键词
D O I
10.1016/j.amc.2003.12.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper, we defined, following a previous work of Kolvankar and Gangal, a notion of alpha-derivative, 0 < alpha < 1. In this article, we study alpha-differential equations associated to our fractional calculus. We then discuss a fundamental problem concerning the Schrodinger equation in the framework of Nottale's scale relativity theory. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 345
页数:23
相关论文
共 15 条
[1]  
ABBOTT L, 1981, AM J PHYS, V49
[2]   Quantum derivatives and the Schrodinger equation [J].
Ben Adda, F ;
Cresson, J .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1323-1334
[3]   About non-differentiable functions [J].
Ben Adda, F ;
Cresson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :721-737
[4]  
Ben Adda F., 1997, J FRACT CALC, V11, P21
[5]   Scale relativity theory for one-dimensional non-differentiable manifolds [J].
Cresson, J .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :553-562
[6]  
Feynman R. P., 1965, QUANTUM MECH PATH IN
[7]  
HAIRER E, 1996, UNDERGRADUATE TEXTS
[8]  
KOLMOGOROV A, 1977, ELEMENTS THEORIE FON
[9]  
KOLVANKAR K, 1997, LOCAL FRACTIONAL DER
[10]  
Nottale L., 1993, FRACTAL SPACE TIME M