Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling

被引:107
作者
Goldbeter, Albert
Gonze, Didier
Pourquie, Olivier
机构
[1] Howard Hughes Med Inst, Stowers Inst Med Res, Kansas City, MO 64110 USA
[2] Univ Libre Brussels, Fac Sci, Brussels, Belgium
关键词
thresholds; model; bistability; somitogenesis; segmentation; FGF; retinoic acid; segmentation clock; morphogen;
D O I
10.1002/dvdy.21193
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The establishment of thresholds along morphogen gradients in the embryo is poorly understood. Using mathematical modeling, we show that mutually inhibitory gradients can generate and position sharp morphogen thresholds in the embryonic space. Taking vertebrate segmentation as a paradigm, we demonstrate that the antagonistic gradients of retinoic acid (RA) and Fibroblast Growth Factor (FGF) along the presomitic mesoderm (PSM) may lead to the coexistence of two stable steady states. Here, we propose that this bistability is associated with abrupt switches in the levels of FGF and RA signaling, which permit the synchronized activation of segmentation genes, such as mesp2, in successive cohorts of PSM cells in response to the segmentation clock, thereby defining the future segments. Bistability resulting from mutual inhibition of RA and FGF provides a molecular mechanism for the all-or-none transitions assumed in the "clock and wavefront" somitogenesis model. Given that mutually antagonistic signaling gradients are common in development, such bistable switches could represent an important principle underlying embryonic patterning.
引用
收藏
页码:1495 / 1508
页数:14
相关论文
共 61 条
[1]  
[Anonymous], 1997, GENES 6
[2]   MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network [J].
Bhalla, US ;
Ram, PT ;
Iyengar, R .
SCIENCE, 2002, 297 (5583) :1018-1023
[3]   Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes [J].
Blentic, A ;
Gale, E ;
Maden, M .
DEVELOPMENTAL DYNAMICS, 2003, 227 (01) :114-127
[4]   Robust formation of morphogen gradients -: art. no. 018103 [J].
Bollenbach, T ;
Kruse, K ;
Pantazis, P ;
González-Gaitán, M ;
Jülicher, F .
PHYSICAL REVIEW LETTERS, 2005, 94 (01)
[5]   Antagonistic interactions between Wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila leg [J].
Brook, WJ ;
Cohen, SM .
SCIENCE, 1996, 273 (5280) :1373-1377
[6]   Patterning mechanisms controlling vertebrate limb development [J].
Capdevila, J ;
Belmonte, JCI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2001, 17 :87-132
[7]   How to make a Biological Switch [J].
Cherry, JL ;
Adler, FR .
JOURNAL OF THEORETICAL BIOLOGY, 2000, 203 (02) :117-133
[8]   Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular signalling [J].
Collier, JR ;
Monk, NAM ;
Maini, PK ;
Lewis, JH .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 183 (04) :429-446
[9]   CLOCK AND WAVEFRONT MODEL FOR CONTROL OF NUMBER OF REPEATED STRUCTURES DURING ANIMAL MORPHOGENESIS [J].
COOKE, J ;
ZEEMAN, EC .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 58 (02) :455-476
[10]   Control of the segmentation process by graded MAPK/ERK activation in the chick embryo [J].
Delfini, MC ;
Dubrulle, J ;
Malapert, P ;
Chal, J ;
Pourquié, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (32) :11343-11348