Exponential stability for nonlinear filtering

被引:79
作者
Atar, R [1 ]
Zeitouni, O [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1997年 / 33卷 / 06期
基金
以色列科学基金会;
关键词
nonlinear filtering; nonlinear smoothing; exponential stability; Birkhoff contraction coefficient;
D O I
10.1016/S0246-0203(97)80110-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the a.s. exponential stability of the optimal filter w.r.t. its initial conditions. A bound is provided on the exponential rate (equivalently, on the memory length of the filter) for a general setting both in discrete and in continuous time, in terms of Birkhoff's contraction coefficient. Criteria for exponential stability and explicit bounds on the rate are given in the specific cases of a diffusion process on a compact manifold, and discrete time Markov chains on both continuous and discrete-countable state spaces. A similar question regarding the optimal smoother is investigated and a stability criterion is provided.
引用
收藏
页码:697 / 725
页数:29
相关论文
共 21 条
[1]  
[Anonymous], 1991, APPL STOCHASTIC ANAL
[2]   Lyapunov exponents for finite state nonlinear filtering [J].
Atar, R ;
Zeitouni, O .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (01) :36-55
[3]  
BIRKHOFF G, 1967, AM MATH SOC PUBL, V25
[4]  
BIRKHOFF G., 1957, Transactions of the American Mathematical Society, V85, P219, DOI [10.2307/1992971, DOI 10.2307/1992971]
[5]   A LIMIT-THEOREM FOR LINEAR-SYSTEMS WITH MARKOVIAN COEFFICIENTS [J].
BOUGEROL, P .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (02) :193-221
[6]  
Bougerol P., 1985, PRODUCTS RANDOM MATR
[7]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158
[8]  
Flandoli Franco, 1990, Stochastics Stochastics Rep., V29, P461, DOI DOI 10.1080/17442509008833628
[9]  
HOPF E, 1963, J MATH MECH, V12, P683
[10]  
Karatzas I., 2012, BROWNIAN MOTION STOC, VVol. 113