Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2

被引:417
作者
Ludwig, A [1 ]
Budde, T
Stieber, J
Moosmang, S
Wahl, C
Holthoff, K
Langebartels, A
Wotjak, C
Munsch, T
Zong, XG
Feil, S
Feil, R
Lancel, M
Chien, KR
Konnerth, A
Pape, HC
Biel, M
Hofmann, F
机构
[1] Tech Univ Munich, Inst Pharmakol & Toxikol, D-80802 Munich, Germany
[2] Otto Von Guericke Univ, Inst Physiol, D-39120 Magdeburg, Germany
[3] Univ Munich, Dept Pharm, D-81377 Munich, Germany
[4] Univ Munich, Inst Physiol, D-80336 Munich, Germany
[5] Max Planck Inst Psychiat, D-80804 Munich, Germany
[6] Univ Calif San Diego, Inst Mol Med, La Jolla, CA 92093 USA
关键词
epilepsy; HCN channel; heart; membrane potential; pacemaker current;
D O I
10.1093/emboj/cdg032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hyperpolarization-activated cation (HCN) channels are believed to be involved in the generation of cardiac pacemaker depolarizations as well as in the control of neuronal excitability and plasticity. The contributions of the four individual HCN channel isoforms (HCN1-4) to these diverse functions are not known. Here we show that HCN2-deficient mice exhibit spontaneous absence seizures. The thalamocortical relay neurons of these mice displayed a near complete loss of the HCN current, resulting in a pronounced hyperpolarizing shift of the resting membrane potential, an altered response to depolarizing inputs and an increased susceptibility for oscillations. HCN2-null mice also displayed cardiac sinus dysrhythmia, a reduction of the sinoatrial HCN current and a shift of the maximum diastolic potential to hyperpolarized values. Mice with cardiomyocyte-specific deletion of HCN2 displayed the same dysrhythmia as mice lacking HCN2 globally, indicating that the dysrhythmia is indeed caused by sinoatrial dysfunction. Our results define the physiological role of the HCN2 subunit as a major determinant of membrane resting potential that is required for regular cardiac and neuronal rhythmicity.
引用
收藏
页码:216 / 224
页数:9
相关论文
共 41 条
  • [1] Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus
    Avoli, M
    Louvel, J
    Kurcewicz, I
    Pumain, R
    Barbarosie, M
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1996, 493 (03): : 707 - 717
  • [2] Not so funny anymore: Pacing channels are cloned
    Clapham, DE
    [J]. NEURON, 1998, 21 (01) : 5 - 7
  • [3] DIFRANCESCO D, 1993, ANNU REV PHYSIOL, V55, P455, DOI 10.1146/annurev.physiol.55.1.455
  • [4] Huguenard J R., 1999, Jasper's Basic Mechanisms of the Epilepsies, P991
  • [5] HUGUENARD JR, 1994, J NEUROSCI, V14, P5485
  • [6] CARDIAC PACEMAKING IN THE SINOATRIAL NODE
    IRISAWA, H
    BROWN, HF
    GILES, W
    [J]. PHYSIOLOGICAL REVIEWS, 1993, 73 (01) : 197 - 227
  • [7] Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node
    Ishii, TM
    Takano, M
    Xie, LH
    Noma, A
    Ohmori, H
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (18) : 12835 - 12839
  • [8] Adaptation of distortion product otoacoustic emission in humans
    Kim, DO
    Dorn, PA
    Neely, ST
    Gorga, MP
    [J]. JARO, 2001, 2 (01): : 31 - 40
  • [9] A METHOD FOR THE QUANTIFICATION OF SYNCHRONY AND OSCILLATORY PROPERTIES OF NEURONAL-ACTIVITY
    KONIG, P
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 1994, 54 (01) : 31 - 37
  • [10] Regulation of the calcium channel α1G subunit by divalent cations and organic blockers
    Lacinová, L
    Klugbauer, N
    Hofmann, F
    [J]. NEUROPHARMACOLOGY, 2000, 39 (07) : 1254 - 1266