Identification of near-native structures by clustering protein docking conformations

被引:52
作者
Lorenzen, Stephan [1 ]
Zhang, Yang [1 ]
机构
[1] Univ Kansas, Ctr Bioinformat, Dept Mol biosci, Lawrence, KS 66046 USA
关键词
protein-protein docking; Fast Fourier Transformation; protein structure clustering; docking decoy; docking meta-server; TM-score;
D O I
10.1002/prot.21442
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide good performance in bound docking, using unbound structures as input frequently leads to a high number of false positive hits. For the purpose of better selecting correct docking conformations, we structurally cluster the docking decoys generated by four widely-used FFT-based protein-protein docking methods. In all cases, the selection based on cluster size outperforms the ranking based on the inherent scoring function. If we cluster decoys from different servers together, only marginal improvement is obtained in comparison with clustering decoys from the best individual server. A collection of multiple decoy sets of comparable quality will be the key to improve the clustering result from metadocking servers.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 33 条
[1]   Scoring a diverse set of high-quality docked conformations: A metascore based on electrostatic and desolvation interactions [J].
Camacho, CJ ;
Ma, H ;
Champ, PC .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 63 (04) :868-877
[2]   Free energy landscapes of encounter complexes in protein-protein association [J].
Camacho, CJ ;
Weng, ZP ;
Vajda, S ;
DeLisi, C .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1166-1178
[3]   Successful discrimination of protein interactions [J].
Camacho, CJ ;
Gatchell, DW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (01) :92-97
[4]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[5]   A protein-protein docking benchmark [J].
Chen, R ;
Mintseris, J ;
Janin, J ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (01) :88-91
[6]   A novel shape complementarity scoring function for protein-protein docking [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 51 (03) :397-408
[7]   Docking unbound proteins using shape complementarity, desolvation, and electrostatics [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :281-294
[8]   ClusPro:: An automated docking and discrimination method for the prediction of protein complexes [J].
Comeau, SR ;
Gatchell, DW ;
Vajda, S ;
Camacho, CJ .
BIOINFORMATICS, 2004, 20 (01) :45-50
[9]   ClusPro: a fully automated algorithm for protein-protein docking [J].
Comeau, SR ;
Gatchell, DW ;
Vajda, S ;
Camacho, CJ .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W96-W99
[10]   3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor [J].
Fischer, D .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 51 (03) :434-441