Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution

被引:14
作者
Bera, D
Brinley, E
Kuiry, SC
McCutchen, M
Seal, S
Heinrich, H
Kabes, B
机构
[1] Univ Cent Florida, AMPAC, Surface Engn & Nanotechnol Facil, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[3] Univ Minnesota, Dept Chem Engn, Duluth, MN 55803 USA
关键词
D O I
10.1063/1.1857465
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy. (C) 2005 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 17 条
[1]   Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments [J].
Antisari, MV ;
Marazzi, R ;
Krsmanovic, R .
CARBON, 2003, 41 (12) :2393-2401
[2]   In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method [J].
Bera, D ;
Kuiry, SC ;
McCutchen, M ;
Seal, S ;
Heinrich, H ;
Slane, GC .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (09) :5152-5157
[3]   In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution [J].
Bera, D ;
Kuiry, SC ;
McCutchen, M ;
Kruize, A ;
Heinrich, H ;
Meyyappan, M ;
Seal, S .
CHEMICAL PHYSICS LETTERS, 2004, 386 (4-6) :364-368
[4]   Continuous carbon nanotube production in underwater AC electric arc [J].
Biró, LP ;
Horváth, ZE ;
Szalmás, L ;
Kertész, K ;
Wéber, F ;
Juhász, G ;
Radnóczi, G ;
Gyulai, J .
CHEMICAL PHYSICS LETTERS, 2003, 372 (3-4) :399-402
[5]   Nanotubes and the pursuit of applications [J].
de Heer, WA .
MRS BULLETIN, 2004, 29 (04) :281-285
[6]   CRYSTALLITE GROWTH IN GRAPHITIZING AND NON-GRAPHITIZING CARBONS [J].
FRANKLIN, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 209 (1097) :196-&
[7]  
Hsin YL, 2001, ADV MATER, V13, P830, DOI 10.1002/1521-4095(200106)13:11<830::AID-ADMA830>3.0.CO
[8]  
2-4
[9]   A simple method for the continuous production of carbon nanotubes [J].
Ishigami, M ;
Cumings, J ;
Zettl, A ;
Chen, S .
CHEMICAL PHYSICS LETTERS, 2000, 319 (5-6) :457-459
[10]   Nanocarbon production by arc discharge in water [J].
Lange, H ;
Sioda, M ;
Huczko, A ;
Zhu, Y ;
Kroto, HW ;
Walton, DRM .
CARBON, 2003, 41 (08) :1617-1623