q-Borel-Laplace transforms by means of the Jacobi theta function

被引:16
作者
Zhang, CG [1 ]
机构
[1] Univ La Rochelle, Dept Math, F-17042 La Rochelle, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 01期
关键词
D O I
10.1016/S0764-4442(00)00327-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a notion of asymptotic expansion adapted for one order q-Gevrey power series. It's shown that this notion is naturally related to the Jacobi theta function, which is a q-analog of the usual exponential function. A summation method is then obtained (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:31 / 34
页数:4
相关论文
共 6 条
[1]  
Malgrange B., 1995, EXPO MATH, V13, P163
[2]  
Ramis J.-P., 1992, Ann. Fac. Sci. Toulouse Math., V1, P53
[3]  
SAULOY J, 1999, THESIS U TOULOUSE
[4]  
ZHANG C, 2000, PREPUBLICATION U ROC, V994
[5]  
ZHANG C, 2000, PREPUBLICATION U ROC
[6]   q-Gevrey asymptotic expansions and Gq-summable series [J].
Zhang, CG .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) :227-+