Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord

被引:243
作者
Menei, P
Montero-Menei, C
Whittemore, SR
Bunge, RP
Bunge, MB
机构
[1] Univ Miami, Sch Med, Miami Project Cure Paralysis, Chambers Family Electron Microscopy Lab, Miami, FL 33136 USA
[2] Univ Miami, Sch Med, Dept Cell Biol & Anat, Miami, FL 33136 USA
[3] Univ Miami, Sch Med, Dept Physiol & Biophys, Miami, FL 33136 USA
[4] Univ Miami, Sch Med, Dept Neurol Surg, Miami, FL 33136 USA
关键词
Schwann cell transplantation; CNS regeneration; spinal cord injury; vestibular neurones; raphe neurones; reticular nuclei;
D O I
10.1046/j.1460-9568.1998.00071.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The infusion of BDNF and NT-3 into Schwann cell (SC) grafts promotes regeneration of brainstem neurones into the grafts placed in adult rat spinal cord transected at T8 (Xu at al., 1995b). Here, we compared normal SCs with SCs genetically modified to secrete human BDNF, grafted as trails 5 mm long in the cord distal to a transection site and also deposited in the transection site, for their ability to stimulate supraspinal axonal regeneration beyond the injury. SCs were infected with the replication-deficient retroviral vector pL(hBDNF)RNL encoding the human preproBDNF cDNA. The amounts of BDNF secreted (as detected by ELISA) were 23 and 5 ng/24 h per 10(6) cells for infected and normal SCs, respectively. Biological activity of the secreted BDNF was confirmed by retinal ganglion cell bioassay. The adult rat spinal cord was transected at T8. The use of Hoechst prelabelled SCs demonstrated that trails were maintained for a month. In controls, no SCs were grafted. One month after grafting, axons were present in SC trails. More 5-HT-positive and some DPH-positive fibres were observed in the infected vs. normal SC trails. When Fast Blue was injected 5 mm below the transection site (at the end of the trail), as many as 135 retrogradely labelled neurones could be found in the brainstem, mostly in the reticular and raphe nuclei (normal SCs, up to 22, mostly in vestibular nuclei). Numerous neurones were labelled in the ventral hypothalamus (normal SCs, 0). Also, following Fast Blue injection, a mean of 138 labelled cells was present in dorsal root ganglia (normal SCs, 46) and spinal cord (39 vs. 32) rostral to the transection, No labelled spinal neurones rostral to the transection were seen when SCs were not transplanted. Thus, the transplantation of SCs secreting increased amounts of BDNF improved the regenerative response across a transection site in the thoracic cord. Moreover, the enhanced regeneration observed with infected SCs may be specific as the largest response was from neurones known to express trkB.
引用
收藏
页码:607 / 621
页数:15
相关论文
共 86 条
[1]   DETECTION OF BRAIN-DERIVED NEUROTROPHIC FACTOR-LIKE ACTIVITY IN FIBROBLASTS AND SCHWANN-CELLS - INHIBITION BY ANTIBODIES TO NGF [J].
ACHESON, A ;
BARKER, PA ;
ALDERSON, RF ;
MILLER, FD ;
MURPHY, RA .
NEURON, 1991, 7 (02) :265-275
[2]  
Aguayo A.J., 1985, SYNAPTIC PLASTICITY, P457
[3]   IN-SITU HYBRIDIZATION OF TRKB AND TRKC RECEPTOR MESSENGER-RNA IN RAT FOREBRAIN AND ASSOCIATION WITH HIGH-AFFINITY BINDING OF [I-125] BDNF, [I-125] NT-4/5 AND [I-125] NT-3 [J].
ALTAR, CA ;
SIUCIAK, JA ;
WRIGHT, P ;
IP, NY ;
LINDSAY, RM ;
WIEGAND, SJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (09) :1389-1405
[4]  
BARONVANEVERCOOREN A, 1993, J NEUROSCI RES, V35, P428
[5]   HOECHST-33342 A SUITABLE FLUORESCENT MARKER FOR SCHWANN-CELLS AFTER TRANSPLANTATION IN THE MOUSE SPINAL-CORD [J].
BARONVANEVERCOOREN, A ;
GANSMULLER, A ;
CLERIN, E ;
GUMPEL, M .
NEUROSCIENCE LETTERS, 1991, 131 (02) :241-244
[6]  
BRODAL A, 1981, NEUROLOGICAL ANATOMY, P733
[7]   EXTRUSION TRANSPLANTATION OF SCHWANN-CELLS INTO THE ADULT-RAT THALAMUS INDUCES DIRECTIONAL HOST AXON GROWTH [J].
BROOK, GA ;
LAWRENCE, JM ;
SHAH, B ;
RAISMAN, G .
EXPERIMENTAL NEUROLOGY, 1994, 126 (01) :31-43
[8]   CHARACTERIZATION OF PHOTOCHEMICALLY INDUCED SPINAL-CORD INJURY IN THE RAT BY LIGHT AND ELECTRON-MICROSCOPY [J].
BUNGE, MB ;
HOLETS, VR ;
BATES, ML ;
CLARKE, TS ;
WATSON, BD .
EXPERIMENTAL NEUROLOGY, 1994, 127 (01) :76-93
[9]   PERINEURIUM ORIGINATES FROM FIBROBLASTS - DEMONSTRATION INVITRO WITH A RETROVIRAL MARKER [J].
BUNGE, MB ;
WOOD, PM ;
TYNAN, LB ;
BATES, ML ;
SANES, JR .
SCIENCE, 1989, 243 (4888) :229-231
[10]   CALCITONIN GENE-RELATED PEPTIDE IN RAT SPINAL-CORD MOTONEURONS - SUBCELLULAR-DISTRIBUTION AND CHANGES INDUCED BY AXOTOMY [J].
CALDERO, J ;
CASANOVAS, A ;
SORRIBAS, A ;
ESQUERDA, JE .
NEUROSCIENCE, 1992, 48 (02) :449-461