Effect of nonideal statistics on electron diffusion in sensitized nanocrystalline TiO2 -: art. no. 035304

被引:42
作者
van de Lagemaat, J [1 ]
Kopidakis, N [1 ]
Neale, NR [1 ]
Frank, AJ [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1103/PhysRevB.71.035304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Charge-extraction and time-resolved photocurrent measurements on sensitized electrolyte-infused porous nanocrystalline TiO2 films show that the actual electronic charge in the films is significantly larger than that estimated from small perturbation methods by a constant, light-intensity independent factor (T-n). This result, combined with continuous time random-walk simulations, confirms the theoretical prediction [J. Bisquert, J. Phys. Chem. B 108, 2323 (2004)] that small perturbation techniques measure the chemical diffusion coefficient of electrons instead of the normally assumed tracer diffusion coefficient of electrons; the ratio of the chemical diffusion coefficient to the tracer diffusion coefficient defines the thermodynamic factor (T-n). The difference between the two diffusion coefficients is attributed to nonideal statistics, owing to the presence of an exponential density of states. The ratio of the chemical diffusion coefficient to the tracer diffusion coefficient and therefore the ratio of the actual photoinjected charge in the nanoparticle film to the charge estimated from small perturbation methods is shown to equal the inverse of the disorder parameter alpha (T-n=1/alpha), which relates to the slope of the exponential density of states. Typically, the 1/alpha factor ranges from 2 to 4.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Benkstein KD, 2003, J PHYS CHEM B, V107, P7759, DOI [10.1021/jp022681l, 10.1021/jp0226811]
[2]   Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2323-2332
[3]   Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells [J].
Cao, F ;
Oskam, G ;
Meyer, GJ ;
Searson, PC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (42) :17021-17027
[4]  
Crank J., 1979, MATH DIFFUSION
[5]   Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles [J].
de Jongh, PE ;
Vanmaekelbergh, D .
PHYSICAL REVIEW LETTERS, 1996, 77 (16) :3427-3430
[6]   Thermal activation of the electronic transport in porous titanium dioxides [J].
Dittrich, T ;
Weidmann, J ;
Timoshenko, VY ;
Petrov, AA ;
Koch, F ;
Lisachenko, MG ;
Lebedev, E .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 69 :489-493
[7]   Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy [J].
Dloczik, L ;
Ileperuma, O ;
Lauermann, I ;
Peter, LM ;
Ponomarev, EA ;
Redmond, G ;
Shaw, NJ ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (49) :10281-10289
[8]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919
[9]   Electrons in nanostructured TiO2 solar cells:: transport, recombination and photovoltaic properties [J].
Frank, AJ ;
Kopidakis, N ;
van de Lagemaat, J .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1165-1179
[10]   Excitonic solar cells [J].
Gregg, BA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (20) :4688-4698